Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery.

Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea.
Bioconjugate Chemistry (Impact Factor: 4.58). 02/2008; 19(1):334-41. DOI:10.1021/bc700292v
Source: PubMed

ABSTRACT Glucagon-like peptide-1 (GLP-1) (7-36) is a type of incretin hormone with unique antidiabetic potential. The introduction of orally active GLP-1 offers substantial benefits in the treatment of type 2 diabetes over conventional injection-based therapies. Because the intestinal absorption of GLP-1 is restricted by its natural characteristics, we developed a series of GLP-1 analogues via the site-specific conjugation of biotin-NHS and/or of biotin-poly(ethylene glycol)-NHS at Lys 26 and Lys 34 of GLP-1 (7-36), respectively, in order to improve oral delivery. The resultant GLP-1 analogues, Lys 26,34-DiBiotin-GLP-1 (DB-GLP-1) and Lys 26-Biotin-Lys 34-(Biotin-PEG)-GLP-1 (DBP-GLP-1), were prepared and studied in terms of their chemical, structural, and biological properties. DBP-GLP-1 demonstrated superior proteolytic stability against trypsin, intestinal fluid, and the major GLP-1 inactivation enzyme (dipeptidyl peptidase-IV (DPP-IV)) to native GLP-1 or DB-GLP-1 ( p < 0.001). The in vitro insulinotropic effects of DB-GLP-1 and DBP-GLP-1 showed potent biological activity in a dose-dependent manner, which resembled that of native GLP-1 in terms of stimulating insulin secretion in isolated rat islets of Langerhans. Intraperitoneal glucose tolerance tests (IPGTT) after the oral administration of GLP-1 analogues in diabetic db/db mice demonstrated that DB-GLP-1 and DBP-GLP-1 significantly reduced the AUC 0-180 min of glucose for 3 h by 14.9% and 24.5% compared to that of native GLP-1, respectively ( p < 0.01). In particular, DBP-GLP-1 concentration in plasma rapidly increased 30 min after oral administration in rats, presumably due to improved intestinal absorption. These findings revealed that site-specific biotinylated and biotin-PEGylated GLP-1 is absorbed by intestine and that it has biological activity in vivo. Therefore, we propose that this orally active bioconjugated GLP-1 might be considered as a potential oral antidiabetic agent for type 2 diabetes mellitus.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Oral delivery of therapeutics is extremely challenging. The digestive system is designed in a way that naturally allows the degradation of proteins or peptides into small molecules prior to absorption. For systemic absorption, the intact drug molecules must traverse the impending harsh gastrointestinal environment. Technologies, such as enteric coating, with oral dosage formulation strategies have successfully provided the protection of non-peptide based therapeutics against the harsh, acidic condition of the stomach. However, these technologies showed limited success on the protection of therapeutic proteins and peptides. Importantly, inherent permeability coefficient of the therapeutics is still a major problem that has remained unresolved for decades. Addressing this issue in the context, we summarize the strategies that are developed in enhancing the intestinal permeability of a drug molecule either by modifying the intestinal epithelium or by modifying the drug itself. These modifications have been pursued by using a group of molecules that can be conjugated to the drug molecule to alter the cell permeability of the drug or mixed with the drug molecule to alter the epithelial barrier function, in order to achieve the effective drug permeation. This article will address the current trends and future perspectives of the oral delivery strategies.
    Advanced drug delivery reviews 12/2012; · 11.96 Impact Factor
  • Source
    Nanomedicine Nanotechnology Biology and Medicine 01/2014; 10:167-176. · 6.93 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
    Chemical Biology &amp Drug Design 01/2013; 81(1):136-47. · 2.47 Impact Factor

Su Young Chae