Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis

Department of Pharmacolgy, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
AJP Cell Physiology (Impact Factor: 3.67). 03/2008; 294(2):C413-22. DOI: 10.1152/ajpcell.00362.2007
Source: PubMed

ABSTRACT Recently, it has become apparent that mitochondrial DNA (mtDNA) damage can rapidly initiate apoptosis independent of mutations, although the mechanism involved remains unclear. To elucidate this mechanism, angiotensin II-mediated apoptosis was studied in cells that were transduced with a lentiviral vector to overexpress the DNA repair enzyme 8-oxoguanine glycosylase or were treated with inhibitors known to block angiotensin II-induced mtDNA damage. Cells exhibiting angiotensin II-induced mtDNA damage showed two phases of superoxide generation, the first derived from NAD(P)H oxidase and the second of mitochondrial origin, whereas cells prevented from experiencing mtDNA damage importantly exhibited only the first phase. Furthermore, cells with mtDNA damage demonstrated impairments in mitochondrial protein expression, cellular respiration, and complex 1 activity before the onset of the second phase of oxidation. After the second phase, the mitochondrial membrane potential collapsed, cytochrome c was released, and the cells underwent apoptosis, all of which were prevented by disrupting mtDNA damage. Collectively, these data reveal a novel mechanism of apoptosis that is initiated when mtDNA damage triggers mitochondrial superoxide generation and ultimately the activation of the mitochondrial permeability transition. This novel mechanism may play an important pathological role.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h of reperfusion. An intravenous bolus of EndoIII, 8 mg/kg, just prior to reperfusion reduced infarct size from 43.8 ± 1.4 % of the risk zone in control animals to 24.0 ± 1.3 % with no detectable hemodynamic effect. Neither EndoIII's vehicle nor an enzymatically inactive EndoIII mutant (K120Q) offered any protection. The magnitude of EndoIII's protection was comparable to that seen with the platelet aggregation inhibitor cangrelor (25.0 ± 1.8 % infarction of risk zone). Because loading with a P2Y12 receptor blocker to inhibit platelets is currently the standard of care for treatment of acute myocardial infarction, we tested whether EndoIII could further reduce infarct size in rats treated with a maximally protective dose of cangrelor. The combination reduced infarct size to 15.1 ± 0.9 % which was significantly smaller than that seen with either cangrelor or EndoIII alone. Protection from cangrelor but not EndoIII was abrogated by pharmacologic blockade of phosphatidylinositol-3 kinase or adenosine receptors indicating differing cellular mechanisms. We hypothesized that EndoIII protected the heart from spreading necrosis by preventing the release of proinflammatory fragments of mitochondrial DNA (mtDNA) into the heart tissue. In support of this hypothesis, an intravenous bolus at reperfusion of deoxyribonuclease I (DNase I) which should degrade any DNA fragments escaping into the extracellular space was as protective as EndoIII. Furthermore, the combination of EndoIII and DNase I produced additive protection. While EndoIII would maintain mitochondrial integrity in many of the ischemic cardiomyocytes, DNase I would further prevent mtDNA released from those cells that EndoIII could not save from propagating further necrosis. Thus, our mtDNA hypothesis would predict additive protection. Finally to demonstrate the toxicity of mtDNA, isolated hearts were subjected to 15 min of global ischemia. Infarct size doubled when the coronary vasculature was filled with mtDNA fragments during the period of global ischemia. To our knowledge, EndoIII and DNase are the first agents that can both be given at reperfusion and add to the protection of a P2Y12 blocker, and thus should be effective in today's patient with acute myocardial infarction.
    Archiv für Kreislaufforschung 03/2015; 110(2):459. DOI:10.1007/s00395-014-0459-0 · 5.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonalcoholic fatty liver disease (NAFLD) is today considered the most common form of chronic liver disease, affecting a high proportion of the population worldwide. NAFLD encompasses a large spectrum of liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. Obesity, hyperglycemia, type 2 diabetes and hypertriglyceridemia are the most important risk factors. The pathogenesis of NAFLD and its progression to fibrosis and chronic liver disease is still unknown. Accumulating evidence indicates that mitochondrial dysfunction plays a key role in the physiopathology of NAFLD, although the mechanisms underlying this dysfunction are still unclear. Oxidative stress is considered an important factor in producing lethal hepatocyte injury associated with NAFLD. Mitochondrial respiratory chain is the main subcellular source of reactive oxygen species (ROS), which may damage mitochondrial proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, plays an important role in several reactions and processes involved in mitochondrial bioenergetics as well as in mitochondrial dependent steps of apoptosis. This phospholipid is particularly susceptible to ROS attack. Cardiolipin peroxidation has been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including NAFLD. In this review, we focus on the potential roles played by oxidative stress and cardiolipin alterations in mitochondrial dysfunction associated with NAFLD.
    World Journal of Gastroenterology 10/2014; 20(39):14205-14218. DOI:10.3748/wjg.v20.i39.14205 · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, e.g., development, lung function, mitochondrial function, antioxidative defense and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content.This article is protected by copyright. All rights reserved.
    Acta Physiologica 08/2014; 213(1). DOI:10.1111/apha.12365 · 4.25 Impact Factor