Article

Optical Imaging: Current Applications and Future Directions

University of Michigan, Ann Arbor, Michigan, USA.
Journal of Nuclear Medicine (Impact Factor: 5.56). 02/2008; 49(1):1-4. DOI: 10.2967/jnumed.107.045799
Source: PubMed

ABSTRACT Optical techniques, such as bioluminescence and fluorescence, are emerging as powerful new modalities for molecular imaging in disease and therapy. Combining innovative molecular biology and chemistry, researchers have developed optical methods for imaging a variety of cellular and molecular processes in vivo, including protein interactions, protein degradation, and protease activity. Whereas optical imaging has been used primarily for research in small-animal models, there are several areas in which optical molecular imaging will translate to clinical medicine. In this review, we summarize recent advances in optical techniques for molecular imaging and the potential impact for clinical medicine.

0 Followers
 · 
111 Views
  • Source
    • "A few recent reports mentioned the use of specialized ultrasound techniques for the characterization of tissue damage after irradiation [23] [24]. For small animal studies there exist certain imaging techniques which are not useable in humans, such as optical [25] or photo-acoustic imaging [26], which may be useful to visualize certain processes in the tumor or healthy tissues. Phase contrast imaging [27] may be another imaging technique which could be integrated with small animal radiation research platforms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Seit kurzem stehen Präzisions-Bestrahlungsgeräte mit einer integrierten, hoch auflösenden Röntgen-CT-Bildgebung für präklinische Studien zur Verfügung. Diese Forschungsplattformen bieten erhebliche Vorteile gegenüber Tier-Bestrahlungsgeräten der älteren Generationen hinsichtlich der Genauigkeit der bildgeführten, gezielten Strahlentherapie. Diese Plattformen werden wahrscheinlich eine entscheidende Rolle bei der Entwicklung von Experimenten spielen, welche die Übertragung von Forschungsergebnissen in klinische Situationen zum Ziel haben. Innerhalb des Fachgebietes Strahlentherapie, aber auch in anderen Bereichen wie zum Beispiel der Neurologie, bieten diese Geräte einzigartige Möglichkeiten, unter anderen Substanzen die Synergie zwischen Bestrahlung und Medikamenten oder anderen Agentien zu erforschen. Um die Vorteile dieser neuen Technologie voll aus-schöpfen zu können, sind genaue Methoden notwendig, um die Bestrahlung planen und die dreidimensionale Dosisverteilung im Organismus berechnen zu können. Spezielle, hierfür entworfene Bestrahlungsplanungssysteme sind hierbei essentiell. In dieser Übersichtsarbeit erörtern wir die spezielle Situation der Präzisionsbestrahlung von Kleintieren, wir beschreiben die Arbeitsweise der Bestrahlungsplanung bei Tieren, und wir untersuchen verschiedene Algorithmen zur Dosisberechnung (Ray Tracing, Superposition-Konvolution, Monte-Carlo-Simulation), die für die Tierbestrahlung mittels Kilovolt-Photonen verwendet werden. Des Weiteren werden Punke, wie zum Beispiel Methoden der Dosismeldung, Photonenstreuung, Gewebesegmentation und Bewegung kurz angerissen.
    Zeitschrift für Medizinische Physik 12/2014; 24(4). DOI:10.1016/j.zemedi.2014.02.004 · 1.81 Impact Factor
  • Source
    • "Revascularization , cell migration or adaptation to a new environment during colonization cannot be observed directly, and reconstruction of these parameters using comparative histology is problematic because each tumor is different. New whole-body imaging technologies represent a real progress in cancer research as they now measure tumor growth in real-time and detect metastasis at relatively early stages [19] [20] [21] [22]. However, it is still very difficult to detect small metastases either in patients or in animal models , and events that occur at intermediate phases of cancer progression cannot be monitored . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intra-Vital Microscopy (IVM) is used to visualize tumors in animals and analyze various aspects of cancer physiology such as tumor vascularization, cell migration and metastasis. The main advantages of IVM include the real -time analysis of dynamic processes with single-cell resolution. The application of IVM, however, is limited by the availability of animal models that carry visually accessible tumors. These models have evolved over time to become more and more relevant to human tumors. The latest step is the development of a pseudo-orthotopic, syngeneic model for tumor growth and metastasis. In this model, tissue from a variety of mouse organs are grafted in a dorsal skinfold chamber and allowed to revascularize, whereupon tumor cell spheroids are implanted. These spheroids develop into tumors that bear a much closer resemblance to human tumors than xenografts. Unlike xenografts, the vasculature is well-ordered and, because the model is syngeneic, there are no cross-species host immune reactions. The use of fluorescence-tagged pseudo-organs and tumor cells allows IVM analysis and provides real-time access to the development of tumors that closely resemble the real disease. This model can be used to test therapeutics and to image tumor development and stroma-tumor interactions.
    American Journal of Cancer Research 01/2011; 1(5):674-86. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeTo quantitatively evaluate the utility of a translocator protein (TSPO)-targeted near-infrared (NIR) probe (NIR-conPK11195) for in vivo molecular imaging of TSPO in breast cancer. ProceduresNIR-conPK11195 uptake and TSPO-specificity were validated in TSPO-expressing human breast adenocarcinoma cells (MDA-MB-231). In vivo NIR-conPK11195 biodistribution and accumulation were quantitatively evaluated in athymic nude mice bearing MDA-MB-231 xenografts. ResultsFluorescence micrographs illustrated intracellular labeling of MDA-MB-231 cells by NIR-conPK11195. Quantitative uptake and competition assays demonstrated dose-dependent (p < 0.001) and TSPO-specific (p < 0.001) NIR-conPK11195 uptake. In vivo, NIR-conPK11195 preferentially labeled MDA-MB-231 tumors with an 11-fold (p < 0.001) and 7-fold (p < 0.001) contrast enhancement over normal tissue and unconjugated NIR dye, respectively. ConclusionsNIR-conPK11195 appears to be a promising TSPO-targeted molecular imaging agent for visualization and quantification of breast cancer cells in vivo. This research represents the first study to demonstrate the feasibility of TSPO imaging as an alternative breast cancer imaging approach. Key wordsPeripheral benzodiazepine receptor-Translocator protein-PK 11195-Molecular imaging-Breast cancer-MDA-MB-231-Diagnosis-Steroidogenesis-Prognosis-Staging
    Molecular Imaging & Biology 06/2010; 12(3):349-358. DOI:10.1007/s11307-009-0270-8 · 2.87 Impact Factor
Show more