Luker, GD and Luker, KE. Optical imaging: current applications and future directions. J Nucl Med 49: 1-4

University of Michigan, Ann Arbor, Michigan, USA.
Journal of Nuclear Medicine (Impact Factor: 6.16). 02/2008; 49(1):1-4. DOI: 10.2967/jnumed.107.045799
Source: PubMed


Optical techniques, such as bioluminescence and fluorescence, are emerging as powerful new modalities for molecular imaging in disease and therapy. Combining innovative molecular biology and chemistry, researchers have developed optical methods for imaging a variety of cellular and molecular processes in vivo, including protein interactions, protein degradation, and protease activity. Whereas optical imaging has been used primarily for research in small-animal models, there are several areas in which optical molecular imaging will translate to clinical medicine. In this review, we summarize recent advances in optical techniques for molecular imaging and the potential impact for clinical medicine.

18 Reads
  • Source
    • "A few recent reports mentioned the use of specialized ultrasound techniques for the characterization of tissue damage after irradiation [23] [24]. For small animal studies there exist certain imaging techniques which are not useable in humans, such as optical [25] or photo-acoustic imaging [26], which may be useful to visualize certain processes in the tumor or healthy tissues. Phase contrast imaging [27] may be another imaging technique which could be integrated with small animal radiation research platforms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Seit kurzem stehen Präzisions-Bestrahlungsgeräte mit einer integrierten, hoch auflösenden Röntgen-CT-Bildgebung für präklinische Studien zur Verfügung. Diese Forschungsplattformen bieten erhebliche Vorteile gegenüber Tier-Bestrahlungsgeräten der älteren Generationen hinsichtlich der Genauigkeit der bildgeführten, gezielten Strahlentherapie. Diese Plattformen werden wahrscheinlich eine entscheidende Rolle bei der Entwicklung von Experimenten spielen, welche die Übertragung von Forschungsergebnissen in klinische Situationen zum Ziel haben. Innerhalb des Fachgebietes Strahlentherapie, aber auch in anderen Bereichen wie zum Beispiel der Neurologie, bieten diese Geräte einzigartige Möglichkeiten, unter anderen Substanzen die Synergie zwischen Bestrahlung und Medikamenten oder anderen Agentien zu erforschen. Um die Vorteile dieser neuen Technologie voll aus-schöpfen zu können, sind genaue Methoden notwendig, um die Bestrahlung planen und die dreidimensionale Dosisverteilung im Organismus berechnen zu können. Spezielle, hierfür entworfene Bestrahlungsplanungssysteme sind hierbei essentiell. In dieser Übersichtsarbeit erörtern wir die spezielle Situation der Präzisionsbestrahlung von Kleintieren, wir beschreiben die Arbeitsweise der Bestrahlungsplanung bei Tieren, und wir untersuchen verschiedene Algorithmen zur Dosisberechnung (Ray Tracing, Superposition-Konvolution, Monte-Carlo-Simulation), die für die Tierbestrahlung mittels Kilovolt-Photonen verwendet werden. Des Weiteren werden Punke, wie zum Beispiel Methoden der Dosismeldung, Photonenstreuung, Gewebesegmentation und Bewegung kurz angerissen.
    Zeitschrift für Medizinische Physik 12/2014; 24(4). DOI:10.1016/j.zemedi.2014.02.004 · 2.96 Impact Factor
  • Source
    • "From its early development in the 1990s, in vivo optical imaging (OI) demonstrated a growing interest by the scientific community and a large number of applications in many research areas from plant research to biochemical, biopharmaceutical, and biomedical sciences [1]. This is due to the fact that OI techniques are easy to perform, with low cost and high throughput. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 103 and 5 × 104 cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging. Fig Optical imaging using TurboLuc fusion reporter protein
    Analytical and Bioanalytical Chemistry 06/2014; 406(23). DOI:10.1007/s00216-014-7917-2 · 3.44 Impact Factor
  • Source
    • "OMI provides quantitative research on the distribution of fluorescent molecule and direct recording and display of biomolecule and its kinetic process, mostly absorption and scattering related organizational and biochemical information, by using some reporter genes or fluorescent dyes, and uses photon detector to detect fluorescent signal. The fluorescence emission can be spontaneously or stimulated by light with specific wavelength to appropriate fluorescent probe, or depends on protein interactions, protein degradation, and protease activity [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.
    02/2014; 2014(6):429198. DOI:10.1155/2014/429198
Show more