Article

Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7.

Institute of Clinical Molecular Biology and Tumour Genetics, GSF-Research Center of Environment and Health, Munich Center for Integrated Protein Science (CiPSM), Marchioninistrasse 25, 81377 Munich, Germany.
Science (Impact Factor: 31.48). 01/2008; 318(5857):1780-2. DOI: 10.1126/science.1145977
Source: PubMed

ABSTRACT RNA polymerase II is distinguished by its large carboxyl-terminal repeat domain (CTD), composed of repeats of the consensus heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Differential phosphorylation of serine-2 and serine-5 at the 5' and 3' regions of genes appears to coordinate the localization of transcription and RNA processing factors to the elongating polymerase complex. Using monoclonal antibodies, we reveal serine-7 phosphorylation on transcribed genes. This position does not appear to be phosphorylated in CTDs of less than 20 consensus repeats. The position of repeats where serine-7 is substituted influenced the appearance of distinct phosphorylated forms, suggesting functional differences between CTD regions. Our results indicate that restriction of serine-7 epitopes to the Linker-proximal region limits CTD phosphorylation patterns and is a requirement for optimal gene expression.

Download full-text

Full-text

Available from: Thomas K Albert, Jun 28, 2015
0 Followers
 · 
186 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular cell 02/2015; 57:1-15. DOI:10.1016/j.molcel.2014.12.026 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide analyses have revolutionized our ability to study the transcriptional regulation of circadian rhythms. The advent of next-generation sequencing methods has facilitated the use of two such technologies, ChIP-seq and RNA-seq. In this chapter, we describe detailed methods and protocols for these two techniques, with emphasis on their usage in circadian rhythm experiments in the mouse liver, a major target organ of the circadian clock system. Critical factors for these methods are highlighted and issues arising with time series samples for ChIP-seq and RNA-seq are discussed. Finally, detailed protocols for library preparation suitable for Illumina sequencing platforms are presented. © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryote's RNA polymerases II (RNAPII) have the feature to contain, at the carbossi-terminal region of their largest subunit Rpb1, a unique CTD domain. Rpb1-CTD is composed of an increasing number of repetitions of the Y1 S2 P3 T4 S5 P6 S7 heptad that goes in parallel with the developmental level of organisms. Because of its composition, the CTD domain has a huge structural plasticity; virtually all the residues can be subjected to post-translational modifications and the two prolines can either be in cis or trans conformations. In light of these features, it is reasonable to think that different specific nuances of CTD modification and interacting factors take place not only on different gene promoters but also during different stages of the transcription cycle and reasonably might have a role even if the polymerase is on or off the DNA template. Rpb1-CTD domain is involved not only in regulating transcriptional rates, but also in all co-transcriptional processes, such as pre-mRNA processing, splicing, cleavage and export. Moreover, recent studies highlight a role of CTD in DNA replication and in maintenance of genomic stability and specific CTD-modifications have been related to different CTD functions. In this paper we examine results from the most recent CTD-related literature and give an overview of the general function of Rpb1-CTD in transcription, transcription-related and non transcription-related processes in which it has been recently shown to be involved in. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 05/2014; 229(5). DOI:10.1002/jcp.24483 · 3.87 Impact Factor