Article

Autism: Maternally derived antibodies specific for fetal brain proteins

Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA.
NeuroToxicology (Impact Factor: 3.05). 04/2008; 29(2):226-31. DOI: 10.1016/j.neuro.2007.10.010
Source: PubMed

ABSTRACT Autism is a profound disorder of neurodevelopment with poorly understood biological origins. A potential role for maternal autoantibodies in the etiology of some cases of autism has been proposed in previous studies. To investigate this hypothesis, maternal plasma antibodies against human fetal and adult brain proteins were analyzed by western blot in 61 mothers of children with autistic disorder and 102 controls matched for maternal age and birth year (62 mothers of typically developing children (TD) and 40 mothers of children with non-ASD developmental delays (DD)). We observed reactivity to two protein bands at approximately 73 and 37kDa in plasma from 7 of 61 (11.5%) mothers of children with autism (AU) against fetal but not adult brain, which was not noted in either control group (TD; 0/62 p=0.0061 and DD; 0/40 p=0.0401). Further, the presence of reactivity to these two bands was associated with parent report of behavioral regression in AU children when compared to the TD (p=0.0019) and DD (0.0089) groups. Individual reactivity to the 37kDa band was observed significantly more often in the AU population compared with TD (p=0.0086) and DD (p=0.002) mothers, yielding a 5.69-fold odds ratio (95% confidence interval 2.09-15.51) associated with this band. The presence of these antibodies in the plasma of some mothers of children with autism, as well as the differential findings between mothers of children with early onset and regressive autism may suggest an association between the transfer of IgG autoantibodies during early neurodevelopment and the risk of developing of autism in some children.

Full-text

Available from: Judy Van de Water, Jun 01, 2015
1 Follower
 · 
217 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of autism research is currently divided based on a fundamental question regarding the nature of autism: Some are convinced that autism is a pandemic of modern culture, with environmental factors at the roots. Others are convinced that the disease is not pandemic in nature, but rather that it has been with humanity for millennia, with its biological and neurological underpinnings just now being understood. In this review, two lines of reasoning are examined which suggest that autism is indeed a pandemic of modern culture. First, given the widely appreciated derailment of immune function by modern culture, evidence that autism is strongly associated with aberrant immune function is examined. Second, evidence is reviewed indicating that autism is associated with 'triggers' that are, for the most part, a construct of modern culture. In light of this reasoning, current epidemiological evidence regarding the incidence of autism, including the role of changing awareness and diagnostic criteria, is examined. Finally, the potential role of the microbial flora (the microbiome) in the pathogenesis of autism is discussed, with the view that the microbial flora is a subset of the life associated with the human body, and that the entire human biome, including both the microbial flora and the fauna, has been radically destabilized by modern culture. It is suggested that the unequivocal way to resolve the debate regarding the pandemic nature of autism is to perform an experiment: monitor the prevalence of autism after normalizing immune function in a Western population using readily available approaches that address the well-known factors underlying the immune dysfunction in that population.
    Microbial Ecology in Health and Disease 01/2015; 26:26253. DOI:10.3402/mehd.v26.26253
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review. Copyright © 2014. Published by Elsevier B.V.
    Immunology Letters 11/2014; 163(1):49-55. DOI:10.1016/j.imlet.2014.11.006 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased cellular proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size also and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 12/2014; DOI:10.1093/cercor/bhu291 · 8.31 Impact Factor