Article

Rapid identification of mitochondrial DNA (mtDNA) mutations in neuromuscular disorders by using surveyor strategy.

Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France.
Mitochondrion (Impact Factor: 3.52). 04/2008; 8(2):136-45. DOI: 10.1016/j.mito.2007.10.008
Source: PubMed

ABSTRACT Mutations of mitochondrial genome are responsible for respiratory chain defects in numerous patients. We have used a strategy, based on the use of a mismatch-specific DNA endonuclease named " Surveyor Nuclease", for screening the entire mtDNA in a group of 50 patients with neuromuscular features, suggesting a respiratory chain dysfunction. We identified mtDNA mutations in 20% of patients (10/50). Among the identified mutations, four are not found in any mitochondrial database and have not been reported previously. We also confirm that mtDNA polymorphisms are frequently found in a heteroplasmic state (15 different polymorphisms were identified among which five were novel).

0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A third-generation multichannel data acquisition system has been designed for cardiac electrogram analysis. The system is capable of recording data from 240 electrode sites, sampling at 2000 Hz. The design required special-purpose front-end electronics for intraoperative recordings, and high-bandwidth data acquisition for analysis of data on line. These design requirements are an attempt to simplify the problems associated with patient safety (leakage current) and the rapid analysis of large amounts of data.< >
    Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE; 12/1988
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
    Annals of the New York Academy of Sciences 02/2009; 1151(1):133-56. DOI:10.1111/j.1749-6632.2008.03572.x · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of molecular screening in 980 patients carried out as part of their work-up for suspected hereditary optic neuropathies. All the patients were investigated for Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten primary LHON-causing mtDNA mutations and examining the entire coding sequences of the OPA1 and OPA3 genes, the two genes currently identified in ADOA. Molecular defects were identified in 440 patients (45% of screened patients). Among these, 295 patients (67%) had an OPA1 mutation, 131 patients (30%) had an mtDNA mutation, and 14 patients (3%), belonging to three unrelated families, had an OPA3 mutation. Interestingly, OPA1 mutations were found in 157 (40%) of the 392 apparently sporadic cases of optic atrophy. The eOPA1 locus-specific database now contains a total of 204 OPA1 mutations, including 77 novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work-up of optic neuropathies. Our results highlight the importance of investigating LHON-causing mtDNA mutations as well as OPA1 and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease.
    Human Mutation 04/2009; 30(7):E692-705. DOI:10.1002/humu.21025 · 5.05 Impact Factor