Rapid identification of mitochondrial DNA (mtDNA) mutations in neuromuscular disorders by using surveyor strategy

Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France.
Mitochondrion (Impact Factor: 3.25). 04/2008; 8(2):136-45. DOI: 10.1016/j.mito.2007.10.008
Source: PubMed


Mutations of mitochondrial genome are responsible for respiratory chain defects in numerous patients. We have used a strategy, based on the use of a mismatch-specific DNA endonuclease named " Surveyor Nuclease", for screening the entire mtDNA in a group of 50 patients with neuromuscular features, suggesting a respiratory chain dysfunction. We identified mtDNA mutations in 20% of patients (10/50). Among the identified mutations, four are not found in any mitochondrial database and have not been reported previously. We also confirm that mtDNA polymorphisms are frequently found in a heteroplasmic state (15 different polymorphisms were identified among which five were novel).

7 Reads
  • Source
    • "Janne et al. has applied this platform for high-sensitivity mutation screening of the epidermal growth factor receptor (EGRF) gene in human cancer specimens [10], but it has not been applied for the detection of mtDNA mutation. Although Bannwarth et al. have developed 17 primer pairs for screening mutations of entire human mtDNA by using SN analysis, they detected cleaved DNA fragments by using agarose gel electrophoresis [11], [12]. Because SN/WAVE-HS analysis does not require the testing on optimal temperatures and can be used to analyze amplicons much longer than 500 bp, it is very likely to be a more superior technique than DHPLC for the efficient screening of unknown heteroplasmic variants or mutations in entire mtDNA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.
    PLoS ONE 03/2014; 9(3):e92817. DOI:10.1371/journal.pone.0092817 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A third-generation multichannel data acquisition system has been designed for cardiac electrogram analysis. The system is capable of recording data from 240 electrode sites, sampling at 2000 Hz. The design required special-purpose front-end electronics for intraoperative recordings, and high-bandwidth data acquisition for analysis of data on line. These design requirements are an attempt to simplify the problems associated with patient safety (leakage current) and the rapid analysis of large amounts of data.< >
    Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE; 12/1988
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
    Annals of the New York Academy of Sciences 02/2009; 1151(1):133-56. DOI:10.1111/j.1749-6632.2008.03572.x · 4.38 Impact Factor
Show more