Article

Induction of pluripotent stem cells from fibroblast cultures.

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-machi, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
Nature Protocol (Impact Factor: 8.36). 02/2007; 2(12):3081-9. DOI: 10.1038/nprot.2007.418
Source: PubMed

ABSTRACT Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.

4 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epige-netic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an un-methylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 pro-moter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.
    Stem Cell Reports 10/2014; 3(1-8). DOI:10.1016/j.stemcr.2014.07.013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poorly-defined interactions between environmental and genetic risk factors underlie Parkinson's disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD.
    Neurobiology of Disease 10/2014; 73. DOI:10.1016/j.nbd.2014.10.002 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During human pre-implantation development the totipotent zygote divides and undergoes a number of changes that lead to the first lineage differentiation in the blastocyst displaying trophectoderm and inner cell mass on day 5. The trophectoderm is a differentiated epithelium needed for implantation and the inner cell mass (ICM) forms the embryo proper and serves as a source for pluripotent embryonic stem cells. The blastocyst implants around day 7. The second lineage differentiation occurs in the ICM after implantation resulting in specification of primitive endoderm and epiblast. Knowledge on human pre-implantation development is limited due to ethical and legal restrictions on embryo research and scarcity of materials. Studies in the human are mainly descriptive and lack functional evidence. Most information on embryo development is obtained from animal models and embryonic stem cell cultures and should be extrapolated with caution. This paper reviews totipotency and the molecular determinants and pathways involved in lineage segregation in the human embryo, as well as the role of embryonic genome activation, cell cycle features and epigenetic modifications.
    Molecular Human Reproduction 04/2014; DOI:10.1093/molehr/gau027 · 3.48 Impact Factor