Induction of pluripotent stem cells from fibroblast cultures.

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-machi, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
Nature Protocol (Impact Factor: 8.36). 02/2007; 2(12):3081-9. DOI: 10.1038/nprot.2007.418
Source: PubMed

ABSTRACT Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in therapeutically important cell fate reprogramming fuelled a renaissance in the use of mRNA-based gene vectors. Thus, mRNA vectors were successfully employed to induce lasting epigenetic changes in various target cells making them short-listed vector candidates for the manufacture of therapeutic engraftment materials for autologous transplantation, artificial human tissues for drug discovery via high-throughput screening projects and also for therapeutic cell trans-differentiation directly in the human body. De-differentiation of cells into 'induced pluripotent stem cells', transgene-directed differentiation and trans-differentiation require the simultaneous delivery of a number of regulatory factors, and, favourably, potent reprogramming vector cocktails can be straightforwardly assembled from a selection of mRNA species. In addition, several proteins can be conveniently expressed from a single mRNA using internal ribosome entry sites (IRESes) or, alternatively, fusion proteins supplemented with 'polypeptide-cleaving' ribosome skipping sequences. This review is focused on the design and production of cell-fate changing mRNAs.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs), we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs) using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs) was verified by demonstrating embryonic stem cell (ESC) antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs) and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs' gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs) revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2) than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4) and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha) as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1) more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs' epigenetic memory.
    PLoS ONE 03/2015; 10(3):e0119275. DOI:10.1371/journal.pone.0119275 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson's, Alzheimer's and Huntington's disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
    International Journal of Molecular Sciences 16(2):4043-4067. DOI:10.3390/ijms16024043 · 2.46 Impact Factor