A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC.

Department of Surgical Oncology, Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, 890-8520, Japan.
Annals of Surgical Oncology (Impact Factor: 4.12). 04/2008; 15(3):923-33. DOI: 10.1245/s10434-007-9698-8
Source: PubMed

ABSTRACT The expression of the receptor for advanced glycation end products (RAGE) has an impact on the mechanisms giving rise to characteristic features of various cancer cells. The purpose of this study was to elucidate the clinicopathological relevance of the level of RAGE expression in patients with hepatocellular carcinoma (HCC) and to explore the effect of RAGE expression on the characteristic features of HCC.
The expression of RAGE was assessed in paired cancer and noncancerous tissues with HCC, using reverse-transcription polymerase chain reaction (RT-PCR), and immunohistochemistry. The quantitative RT-PCR data were analyzed in association with the clinicopathological factors of the patients with HCC. In in vitro experiments, the survival of RAGE-transfected Cos7 and mock-transfected Cos7 cells was compared under hypoxic conditions. In addition, after reducing RAGE levels in RAGE-transfected Cos7 cells by siRNA, similar experiments were performed.
The expression of RAGE mRNA was lower in normal liver than in hepatitis and highest in HCC. Furthermore, in HCC, it was high in well- and moderately differentiated tumors but declined as tumors dedifferentiated to poorly differentiated HCC. Furthermore, HCC lines resistant to hypoxia were found to have higher levels of RAGE expression, and RAGE transfectant also showed significantly prolonged survival under hypoxia.
Our results suggest that HCC during the early stage of tumorigenesis with less blood supply may acquire resistance to stringent hypoxic milieu by hypoxia-induced RAGE expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial dysfunction seems to be intrinsically involved in the pathogenesis of multiple organ failure because of enhanced production of reactive oxygen species and induction of oxidative damage. Chronic oxidative stress in turn causes an accumulation of advanced glycation end products (AGEs). To investigate whether mitochondrial dysfunction-associated oxidative stress leads to increased formation and accumulation of AGE, we studied hepatic glycation in uncoupling protein-2 (UCP2-/-) knockout mice. Using the galactosamine/lipopolysaccharide (G/L)-induced liver injury model, we further tested the hypothesis that a mitochondrial dysfunction-associated increase of hepatic glycation is causative for increased liver injury. Under baseline conditions, UCP2-/- mice showed higher malondialdehyde levels and reduced glutathione/glutathione disulfide ratios as well as significantly higher hepatic levels of AGE and hepatic expression of receptor for AGE (RAGE) when compared with UCP2+/+ mice, indicative for increased oxidative stress and hepatic glycation. Further, livers of G/L-challenged UCP2-/- mice revealed significantly more pronounced tissue injury and were found to express higher levels of AGE and RAGE compared with wild-type mice. Functional blockade of RAGE by application of recombinant RAGE significantly diminished liver damage particularly in UCP2-/- mice. This in turn increased survival from 30% in UCP2+/+ mice to 50% in UCP2-/- mice. In summary, we show for the first time that mitochondrial dysfunction-associated oxidative stress enhances hepatic protein glycation, which aggravates inflammation-induced liver injury. Targeting the AGE/RAGE interaction by the blockade of RAGE might be of therapeutic value for the oxidative stress-exposed liver.
    Laboratory Investigation 04/2010; 90(8):1189-98. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The association between diabetes and hyperglycemia and the associated increased risk of several solid and hematologic malignancies has been the subject of investigation for many years. Although the association is not fully understood, current knowledge clearly indicates that diabetes may influence malignant cell transformation by several mechanisms, including hyperinsulinemia, hyperglycemia and chronic inflammation. In this context, the receptor for advanced glycation end-products (RAGE) has emerged as a focal point in its contribution to malignant transformation and tumor growth. We highlight how RAGE, once activated, as it manifests itself in conditions such as diabetes or hyperglycemia, is able to continuously bring about an inflammatory milieu, thus supporting the contribution of chronic inflammation to the development of malignancies.
    World journal of diabetes. 07/2011; 2(7):108-13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiligand receptor for advanced glycation end products (RAGE) is expressed in a wide variety of tissues, including the liver. Interactions with its ligands lead to cellular activation and thus prolonged inflammation and apoptosis. RAGE also exists in a soluble, truncated isoform called soluble RAGE, which has the same ligand-binding specificity as membrane-RAGE; acting as decoy, it can contribute to the removal/neutralization of circulating ligands and the resultant reduction of signaling pathway activation. Experimental and clinical studies have highlighted the idea that the RAGE-ligand axis is involved in the development of liver fibrosis, inflammation, and regeneration after a massive injury and in the setting of liver transplantation. The involvement of the RAGE-ligand axis in vascular disease, diabetes, cancer, and neurodegeneration is well established, but it still needs to be clarified in the setting of liver diseases. We present a review of the recent literature on this receptor in surgical and clinical settings involving the liver, and we highlight the open issues and possible directions of future research.
    Liver Transplantation 03/2011; 17(6):633-40. · 3.94 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014