Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer.

Instituto de Biología y Medicina Experimental (IBYME), Laboratorio de Inmunopatología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
Expert opinion on biological therapy (Impact Factor: 3.65). 02/2008; 8(1):45-57. DOI: 10.1517/14712598.8.1.45
Source: PubMed

ABSTRACT Galectin-1, a member of a family of highly conserved glycan-binding proteins, has emerged as a regulator of immune cell tolerance and homeostasis. This endogenous lectin widely expressed at sites of inflammation and tumour growth, has been postulated as an attractive immunosuppressive agent to restore immune cell tolerance and homeostasis in autoimmune and inflammatory settings. On the other hand, galectin-1 contributes to different steps of tumour progression including cell adhesion, migration and tumour-immune escape, suggesting that blockade of galectin-1 might result in therapeutic benefits in cancer. Recent findings implicating galectin-glycoprotein lattices as selective regulators of inflammatory responses have provided new insights into the understanding of the molecular bases of galectin-1-induced immunoregulation. Here the authors review the dual role of galectin-1 as a selective immunosuppressive agent in T helper (T(H))1 and T(H)17-mediated inflammatory/autoimmune disorders and a potential therapeutic target in cancer and metastasis.

Download full-text


Available from: Mariana Salatino, Jul 31, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectins belong to a family of carbohydrate-binding proteins with an affinity for β-galactosides. Galectin-1 is differentially expressed by various normal and pathologic tissues and displays a wide range of biological activities. In oncology, galectin-1 plays a pivotal role in tumor growth and in the multistep process of invasion, angiogenesis, and metastasis. Evidence indicates that galectin-1 exerts a variety of functions at different steps of tumor progression. Moreover, it has been demonstrated that galectin-1 cellular localization and galectin-1 binding partners depend on tumor localization and stage. Recently, galectin-1 overexpression has been extensively documented in several tumor types and/or in the stroma of cancer cells. Its expression is thought to reflect tumor aggressiveness in several tumor types. Galectin-1 has been identified as a promising drug target using synthetic and natural inhibitors. Preclinical data suggest that galectin-1 inhibition may lead to direct antiproliferative effects in cancer cells as well as antiangiogenic effects in tumors. We provide an up-to-date overview of available data on the role of galectin-1 in different molecular and biochemical pathways involved in human malignancies. One of the major challenges faced in targeting galectin-1 is the translation of current knowledge into the design and development of effective galectin-1 inhibitors in cancer therapy.
    Cancer Treatment Reviews 08/2013; 40(2). DOI:10.1016/j.ctrv.2013.07.007 · 6.47 Impact Factor
  • Source
    Pancreatic Cancer - Molecular Mechanism and Targets, 12/2011; , ISBN: 978-953-51-0410-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of Trk receptors is an important prognostic factor in neuroblastoma (NB) and other cancers. TrkB and its ligand brain-derived neurotrophic factor (BDNF) are preferentially expressed in NB with poor prognosis, conferring invasive and metastatic potential to the tumor cells as well as enhancing therapy resistance. Galectin-1 (Gal-1) has emerged as an interesting cancer target, as it is involved in modulating cell proliferation, cell death and cell migration, all of which are linked to cancer initiation and progression. We previously identified Gal-1 mRNA to be upregulated in patients with aggressive, relapsing NB and found that Gal-1 protein was upregulated in human SY5Y NB cells on activation of ectopically expressed TrkB (SY5Y-TrkB), but not TrkA (SY5Y-TrkA). Here, we report that Gal-1 mRNA levels positively correlated with TrkB expression and anticorrelated with TrkA expression in a cohort of 102 primary NB. Immunohistochemical analyses of 92 primary NB specimens revealed high Gal-1 expression in stromal septae and in neuroblasts. BDNF-mediated activation of TrkB enhanced invasiveness and migration in vitro, which could be impaired by transient transfection using Gal-1-specific siRNA or a neutralizing antibody directed against Gal-1. The addition of recombinant Gal-1 (rGal-1) in the absence of BDNF partially restored migration and invasive capacity. Using the Trk inhibitor K252a, we could show that the upregulation of Gal-1 protein strictly depended on activated TrkB. Our data suggest that targeting Gal-1 might be a promising strategy for the treatment of aggressive NB.
    Oncogene 05/2009; 28(19):2015-23. DOI:10.1038/onc.2009.70 · 8.56 Impact Factor