Article

A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway.

Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
Molecular Cell (Impact Factor: 14.46). 01/2008; 28(5):786-97. DOI: 10.1016/j.molcel.2007.09.031
Source: PubMed

ABSTRACT The deubiquitinating enzyme USP1 controls the cellular levels of the DNA damage response protein Ub-FANCD2, a key protein of the Fanconi anemia DNA repair pathway. Here we report the purification of a USP1 multisubunit protein complex from HeLa cells containing stoichiometric amounts of a WD40 repeat-containing protein, USP1 associated factor 1 (UAF1). In vitro reconstitution of USP1 deubiquitinating enzyme activity, using either ubiquitin-7-amido-4-methylcoumarin (Ub-AMC) or purified monoubiquitinated FANCD2 protein as substrates, demonstrates that UAF1 functions as an activator of USP1. UAF1 binding increases the catalytic turnover (kcat) but does not increase the affinity of the USP1 enzyme for the substrate (KM). Moreover, we show that DNA damage results in an immediate shutoff of transcription of the USP1 gene, leading to a rapid decline in the USP1/UAF1 protein complex. Taken together, our results describe a mechanism of regulation of the deubiquitinating enzyme, USP1, and of DNA repair.

0 Bookmarks
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular Cell 12/2014; 57(1). DOI:10.1016/j.molcel.2014.12.001 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
    Cell cycle (Georgetown, Tex.) 10/2014; 13(19):2999-3015. DOI:10.4161/15384101.2014.956475 · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP-Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP-Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP-Ubl domain promotes a change of a switching loop near the active site. This 'allosteric regulation of product discharge' provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes.
    Nature Communications 11/2014; 5:5399. DOI:10.1038/ncomms6399 · 10.74 Impact Factor