Trace amine-associated receptor 1 modulates dopaminergic activity.

Pharmaceuticals Division, Central Nervous System Research, Department PRDNP5 CH, Bldg. 70/331, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 04/2008; 324(3):948-56. DOI: 10.1124/jpet.107.132647
Source: PubMed

ABSTRACT The recent identification of the trace amine-associated receptor (TAAR)1 provides an opportunity to dissociate the effects of trace amines on the dopamine transporter from receptor-mediated effects. To separate both effects on a physiological level, a Taar1 knockout mouse line was generated. Taar1 knockout mice display increased sensitivity to amphetamine as revealed by enhanced amphetamine-triggered increases in locomotor activity and augmented striatal release of dopamine compared with wild-type animals. Under baseline conditions, locomotion and extracellular striatal dopamine levels were similar between Taar1 knockout and wild-type mice. Electrophysiological recordings revealed an elevated spontaneous firing rate of dopaminergic neurons in the ventral tegmental area of Taar1 knock-out mice. The endogenous TAAR1 agonist p-tyramine specifically decreased the spike frequency of these neurons in wild-type but not in Taar1 knockout mice, consistent with the prominent expression of Taar1 in the ventral tegmental area. Taken together, the data reveal TAAR1 as regulator of dopaminergic neurotransmission.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of thyroid hormone (3,5,3′-triiodothyronine, or T3). The differences with T3 are the absence of the carboxylate group and the substitution of iodine with hydrogen in 5 and 3′ positions (Figure 1). In this paper we will review the evidence supporting the hypothesis that T1AM is a chemical messenger, namely that it is an endogenous substance able to interact with specific receptors producing significant functional effects. Special emphasis will be placed on neurological and metabolic effects, which are likely to have physiological and pathophysiological importance.
    Frontiers in Physiology 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor that is expressed in brain and periphery and responds to a class of compounds called trace amines, such as β-phenylethylamine (β-PEA), tyramine, tryptamine, octopamine. The receptor is known to have a very rich pharmacology and could be also activated by different classes of compounds, including dopaminergic, adrenergic and serotonergic ligands. It is expected that targeting hTAAR1 could provide a novel pharmacological approach for several human disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder, Parkinson's disease and metabolic diseases. Only recently, a small number of selective hTAAR1 agonists (among which RO5166017 and T1 AM) and antagonist (EPPTB), have been reported in literature. With the aim to identify new molecular entities able to act as ligands for this target, we used an homology model for the hTAAR1 and performed a virtual screening procedure on an in-house database of compounds. A number of interesting molecules were selected and by testing them in an in vitro assay we found several agonists and one antagonist, with activities in the low micromolar range. These compounds could represent the starting point for the development of more potent and selective TAAR1 ligands. This article is protected by copyright. All rights reserved.
    Chemical Biology &amp Drug Design 06/2014; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal knockout studies suggest that trace amine associated receptor (TAAR) 1 is involved in behavioral effects of psychostimulants such as cocaine. Recently several highly selective TAAR 1 agonists have been discovered. However, little is known of the impact of TAAR 1 agonists on abuse-related effects of cocaine. Here we report the effects of a TAAR 1 agonist RO5263397 on several abuse-related behavioral effects of cocaine in rats. RO5263397 was evaluated for its effects on cocaine-induced behavioral sensitization, conditioned place preference (CPP), cue- and cocaine prime-induced reinstatement of cocaine seeking behavior, and cocaine self-administration using behavioral economic analysis. RO5263397 reduced the expression of cocaine behavioral sensitization, cue- and cocaine prime-induced reinstatement of cocaine seeking, and expression but not development of cocaine CPP. Behavioral economic analysis showed that RO5263397 increased the elasticity of the cocaine demand curve, but did not change cocaine consumption at minimal prices. Taken together, this is the first systematic assessment of a TAAR 1 agonist on a range of behavioral effects of cocaine, showing that RO5263397 was efficacious in reducing cocaine mediated behaviors. Collectively, these data uncover essential neuromodulatory roles of TAAR 1 on cocaine abuse, and suggest that TAAR 1 may represent a novel drug target for the treatment of cocaine addiction.Neuropsychopharmacology accepted article peview online, 18 April 2014. doi:10.1038/npp.2014.91.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 04/2014; · 8.68 Impact Factor