Article

Gibberellin regulates pollen viability and pollen tube growth in rice.

Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
The Plant Cell (Impact Factor: 9.25). 01/2008; 19(12):3876-88. DOI: 10.1105/tpc.107.054759
Source: PubMed

ABSTRACT Gibberellins (GAs) play many biological roles in higher plants. We collected and performed genetic analysis on rice (Oryza sativa) GA-related mutants, including GA-deficient and GA-insensitive mutants. Genetic analysis of the mutants revealed that rice GA-deficient mutations are not transmitted as Mendelian traits to the next generation following self-pollination of F1 heterozygous plants, although GA-insensitive mutations are transmitted normally. To understand these differences in transmission, we examined the effect of GA on microsporogenesis and pollen tube elongation in rice using new GA-deficient and GA-insensitive mutants that produce semifertile flowers. Phenotypic analysis revealed that the GA-deficient mutant reduced pollen elongation1 is defective in pollen tube elongation, resulting in a low fertilization frequency, whereas the GA-insensitive semidominant mutant Slr1-d3 is mainly defective in viable pollen production. Quantitative RT-PCR revealed that GA biosynthesis genes tested whose mutations are transmitted to the next generation at a lower frequency are preferentially expressed after meiosis during pollen development, but expression is absent or very low before the meiosis stage, whereas GA signal-related genes are actively expressed before meiosis. Based on these observations, we predict that the transmission of GA-signaling genes occurs in a sporophytic manner, since the protein products and/or mRNA transcripts of these genes may be introduced into pollen-carrying mutant alleles, whereas GA synthesis genes are transmitted in a gametophytic manner, since these genes are preferentially expressed after meiosis.

0 Bookmarks
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To dissect the role of gibberellins in tomato development, we have constitutively down-regulated the gene GA 20-oxidase1 (GA20ox1). Plants co-suppressed for GA20ox1 (referred to as CO-6 plants) showed vegetative defects typical of GA deficiency such as darker and mis-shaped leaves and dwarfism. CO-6 plants flowered as the controls, although their flowers had subtle defects in the pedicel and in organ insertion. Analysis of male development revealed defects before, during and after meiosis, and a final pollen viability of 22%. The development of female organs and gametes appeared normal. Pollination experiments indicated that the pollen produced by CO-6 plants was able to fertilize control ovaries, but the analysis of the progeny showed that the construct was not transmitted. Ovaries of CO-6 plants showed high fruit set and normal fruit development when pollinated with control pollen. However these fruits were completely seedless due to a stenospermocarpic behaviour that was evidenced by callose layering in the endothelium between 7 and 15 days after pollination. We conclude that GA20ox1 in tomato exerts specific developmental roles that are not redundantly shared with other members of this gene family. For reproductive male development, silencing of this gene is detrimental for pollen production and either gametophytically lethal or severely hampering seed germination. In the pistil, the co-suppression construct does not affect the progamic phase, nor fruit set and growth, but it interferes with seed development after fertilization leading to seed abortion.
    Plant Science 03/2011; 180(3):496-503. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural variation in heading-date genes enables rice, a short-day (SD) plant, to flower early under long-day (LD) conditions at high latitudes. Through analysis of heading-date quantitative trait loci (QTL) with F7 recombinant inbred lines from the cross of early heading 'H143' and late heading 'Milyang23 (M23)', we found a minor-effect Early Heading3 (EH3) QTL in the Hd16 region on chromosome 3. We found that Early flowering1 (EL1), encoding casein kinase I (CKI), is likely to be responsible for the EH3/Hd16 QTL, because a missense mutation occurred in the highly conserved serine/threonine kinase domain of EL1 in H143. A different missense mutation was found in the EL1 kinase domain in Koshihikari. In vitro kinase assays revealed that EL1/CKI in H143 and Koshihikari are nonfunctional. In F7:9 heterogeneous inbred family-near isogenic lines (HNILs), HNIL(H143) flowered 13 days earlier than HNIL(M23) in LD, but not in SD, in which EL1 mainly acts as a LD-dependent flowering repressor, down-regulating Ehd1 expression. In the world rice collection, two types of nonfunctional EL1 variants were found in japonica rice generally cultivated at high latitudes. These results indicate that natural variation in EL1 contributes to early heading for rice adaptation to LD in temperate and cooler regions.
    Plant Cell and Environment 05/2013; · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3, and 4, present in the rice genome. We characterized the activity, expression, and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-GFP fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared to the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter is required for normal pollen germination and/or tube elongation.
    Plant and Cell Physiology 09/2013; · 4.98 Impact Factor

Full-text (2 Sources)

View
25 Downloads
Available from
May 23, 2014