Regulated beta-cell regeneration in the adult mouse pancreas

Diabetes Center, University of California San Francisco, California, USA.
Diabetes (Impact Factor: 8.47). 05/2008; 57(4):958-66. DOI: 10.2337/db07-0913
Source: PubMed

ABSTRACT Several studies have shown that the adult pancreas possesses a limited potential for beta-cell regeneration upon tissue injury. One of the difficulties in studying beta-cell regeneration has been the lack of a robust, synchronized animal model system that would allow controlled regulation of beta-cell loss and subsequent proliferation in adult pancreas. Here we present a transgenic mouse regeneration model in which the c-Myc transcription factor/mutant estrogen receptor (cMycER(TAM)) fusion protein can be specifically activated in mature beta-cells. We have studied these transgenic mice by immunohistochemical and biochemical methods to assess the ablation and posterior regeneration of beta-cells. Activation of the cMycER(TAM) fusion protein results in synchronous and selective beta-cell apoptosis followed by the onset of acute diabetes. Inactivation of c-Myc leads to gradual regeneration of insulin-expressing cells and reversal of diabetes. Our results demonstrate that the mature pancreas has the ability to fully recover from almost complete ablation of all existing beta-cells. Our results also suggest the regeneration of beta-cells is mediated by replication of beta-cells rather than neogenesis from pancreatic ducts.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells resulting in failure of metabolic control. Even though type 1 and 2 diabetes differ in their pathogenesis, restoring β-cell function is the overarching goal for improved therapy of both diseases. This could be achieved either by cell-replacement therapy or by triggering intrinsic regenerative mechanisms of the pancreas. For type 1 diabetes, a combination of β-cell replacement and immunosuppressive therapy could be a curative treatment, whereas for type 2 diabetes enhancing endogenous mechanisms of β-cell regeneration might optimize blood glucose control. This review will briefly summarize recent efforts to allow β-cell regeneration where the most promising approaches are currently (1) increasing β-cell self-replication or neogenesis from ductal progenitors and (2) conversion of α-cells into β-cells.
    06/2014; 3(3):268-274. DOI:10.1016/j.molmet.2014.01.010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Real-time imaging studies are reshaping immunological paradigms, but a visual framework is lacking for self-antigen-specific T cells at the effector phase in target tissues. To address this issue, we conducted intravital, longitudinal imaging analyses of cellular behavior in nonlymphoid target tissues to illustrate some key aspects of T cell biology. We used mouse models of T cell-mediated damage and protection of pancreatic islet grafts. Both CD4(+) and CD8(+) effector T (Teff) lymphocytes directly engaged target cells. Strikingly, juxtaposed β cells lacking specific antigens were not subject to bystander destruction but grew substantially in days, likely by replication. In target tissue, Foxp3(+) regulatory T (Treg) cells persistently contacted Teff cells with or without involvement of CD11c(+) dendritic cells, an observation conciliating with the in vitro "trademark" of Treg function, contact-dependent suppression. This study illustrates tolerance induction by contact-based immune cell interaction in target tissues and highlights potentials of tissue regeneration under antigenic incognito in inflammatory settings.
    Journal of Experimental Medicine 02/2014; 211(3). DOI:10.1084/jem.20130785 · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The diabetes pandemic incurs extraordinary public health and financial costs that are projected to expand for the foreseeable future. Consequently, the development of definitive therapies for diabetes is a priority. Currently, a wide spectrum of therapeutic strategies-from implantable insulin delivery devices to transplantation-based cell replacement therapy, to β-cell regeneration-focus on replacing the lost insulin-producing capacity of individuals with diabetes. Among these, β-cell regeneration remains promising but heretofore unproved. Indeed, recent experimental work has uncovered surprising biology that underscores the potential therapeutic benefit of β-cell regeneration. These studies have elucidated a variety of sources for the endogenous production of new β cells from existing cells. First, β cells, long thought to be postmitotic, have demonstrated the potential for regenerative capacity. Second, the presence of pancreatic facultative endocrine progenitor cells has been established. Third, the malleability of cellular identity has availed the possibility of generating β cells from other differentiated cell types. Here, we review the exciting developments surrounding endogenous sources of β-cell production and consider the potential of realizing a regenerative therapy for diabetes from adult tissues.
    11/2013; DOI:10.1016/j.trsl.2013.11.012


Available from
Mar 20, 2015