Deletion of the archaeal histone in Methanosarcina mazei Gö1 results in reduced growth and genomic transcription

Institut für Allgemeine Mikrobiologie, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
Molecular Microbiology (Impact Factor: 4.42). 03/2008; 67(3):662-71. DOI: 10.1111/j.1365-2958.2007.06076.x
Source: PubMed


HMm is the only archaeal histone in Methanosarcina mazei Göl and recombinant HMm, synthesized by expression of MM1825 in Escherichia coli, has been purified and confirmed to have the DNA binding and compaction properties characteristic of an archaeal histone. Insertion of a puromycin resistance conferring cassette (pac) into MM1825 was not lethal but resulted in mutants (M. mazei MM1825::pac) that have impaired ability to grow on methanol and trimethylamine. Loss of HMm also resulted in increased sensitivity to UV light and decreased transcript levels for approximately 25% of all M. mazei genes. For most genes, the transcript decrease was 3- to 10-fold, but transcripts of MM483 (small heat-shock protein), MM1688 (trimethylamine:corrinoid methyl transferase) and MM3195 (transcription regulator), were reduced 100-, 100- and 25-fold, respectively, in M. mazei MM1825::pac cells. Transcripts of only five adjacent genes that appear to constitute an aromatic amino acid biosynthetic operon were elevated in M. mazei MM1825::pac cells. Complementary synthesis of HMm from a plasmid transformed into M. mazei MM1825::pac restored wild-type growth and transcript levels.

Download full-text


Available from: Kathleen Sandman, Mar 06, 2015
13 Reads
  • Source
    • "). Disruption of the histone gene was not lethal, but resulted in impaired growth on methanol and trimethylamine, and increased sensitivity to UV light. A broad genome-wide defect in gene transcription was also observed (Weidenbach et al., 2008). In M. acetivorans, the pylT gene encoding the tRNA for pyrrolysine was disrupted. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
    Frontiers in Microbiology 10/2012; 3:337. DOI:10.3389/fmicb.2012.00337 · 3.99 Impact Factor
  • Source
    • "Strains and plasmids used in this study are listed in Table 1. Plasmid DNA was transformed into E. coli according to the method of Inoue et al. [14] and into M. mazei using liposome-mediated transformation as described recently [8, 15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP). The nonreplicating allelic exchange vector (pRS345) carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA(154). Characterizing M. mazei ΔsRNA(154) under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA(154) in regulation of nitrogen fixation by posttranscriptional regulation.
    Archaea 09/2011; 2011(6):439608. DOI:10.1155/2011/439608 · 2.71 Impact Factor
  • Source
    • "Researchers studying chromatin structure and function have traditionally relied on the Histone Sequence Database to explore the taxonomic breadth of histones and their variants (40–43). Others have focused on epigenetics and transcriptional regulation and use the database to discover newly reported core histones and histone-fold-containing proteins (44–48). The Histone Database continues to be a comprehensive bioinformatic resource that organizes and stores histone sequences and groups them into families (that now includes archaeal histones), maintains a collection of histone fold-containing sequences, and provides information on three-dimensional structures available in PDB. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at
    Database The Journal of Biological Databases and Curation 01/2011; 2011:bar048. DOI:10.1093/database/bar048 · 3.37 Impact Factor
Show more