Role of glycosaminoglycans for binding and infection of hepatitis B virus.

Institute of Medical Virology, Justus Liebig University, Frankfurter Str. 107, 35392 Giessen, Germany.
Cellular Microbiology (Impact Factor: 4.82). 02/2008; 10(1):122-33. DOI: 10.1111/j.1462-5822.2007.01023.x
Source: PubMed

ABSTRACT Many parts of the life cycle of hepatitis B virus (HBV) infection of hepatocytes have been unravelled, but the attachment and entry process leading to infection is largely unknown. Using primary Tupaia hepatocyte cultures as an in vitro infection system, we determined that HBV uses cell-surface heparan sulfate proteoglycans as low-affinity receptor, because HBV infection was inhibited by heparin (IC50: 5 microg ml(-1)) or other higher-sulfated polymers, but not by lower-sulfated glycosaminoglycans, such as chondroitin sulfate. Pretreatment of primary hepatocytes with heparinase decreased viral binding and inhibited HBV infection completely. Interestingly, after preS1-dependent viral binding at 16 degrees C to the cell surface, subsequent infection could still be inhibited by HBV preS1-lipopeptides, but not by heparin any more, suggesting a shift of the virus to a high-affinity receptor. In summary, we suggest following multistep attachment process: in vivo, HBV is initially trapped within the liver in the space of Dissé by heparan sulfate proteoglycans. Thereafter, HBV binds via its preS1 attachment site and the N-terminal myristic acid to a yet unknown, high-affinity receptor that confers uptake in a yet unknown compartment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral hepatitis remains a worldwide public health problem. The hepatitis D virus (HDV) must either coinfect or superinfect with the hepatitis B virus (HBV). HDV contains a small RNA genome (approximately 1.7 kb) with a single open reading frame (ORF) and requires HBV supplying surface antigens (HBsAgs) to assemble a new HDV virion. During HDV replication, two isoforms of a delta antigen, a small delta antigen (SDAg) and a large delta antigen (LDAg), are produced from the same ORF of the HDV genome. The SDAg is required for HDV replication, whereas the interaction of LDAg with HBsAgs is crucial for packaging of HDV RNA. Various clinical outcomes of HBV/HDV dual infection have been reported, but the molecular interaction between HBV and HDV is poorly understood, especially regarding how HBV and HDV compete with HBsAgs for assembling virions. In this paper, we review the role of endoplasmic reticulum stress induced by HBsAgs and the molecular pathway involved in their promotion of LDAg nuclear export. Because the nuclear sublocalization and export of LDAg is regulated by posttranslational modifications (PTMs), including acetylation, phosphorylation, and isoprenylation, we also summarize the relationship among HBsAg-induced endoplasmic reticulum stress signaling, LDAg PTMs, and nuclear export mechanisms in this review.
    World Journal of Gastroenterology 10/2014; 20(40):14589-14597. DOI:10.3748/wjg.v20.i40.14589 · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic infection with hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. HBV life cycle begins with viral attachment to hepatocytes, mediated by the large HBV surface protein (LHBs). Identification of the sodium-taurocholate cotransporting polypeptide (NTCP) as a HBV receptor has revealed a suitable target for viral entry inhibition. Analysis of serum hepatitis B surface antigen (HBsAg) level is a non-invasive diagnostic parameter that improves HBV treatment opportunities. Furthermore, HBsAg plays an important role in manipulation of host immune response by HBV. However, observations in patients with chronic hepatitis B under conditions of immune suppression and in transgenic mouse models of HBV infection suggest, that in absence of adaptive immune responses cellular mechanisms induced by HBV may also lead to the development of liver diseases. Thus, the multifaceted pathological aspects of HBsAg predetermine the design of new therapeutical options modulating associated biological implications.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The members of the viral family Hepadnaviridae comprise one of the smallest enveloped DNA viruses and cause acute and chronic infections in mammals and birds, leading to large virus and antigen loads in the blood. They have a restricted host range and depend on differentiated hepatocytes for replication. Hepatitis B virus (HBV) is the prototype of the Hepadnaviridae. HBV can persist in infected hepatocytes and has evolved elaborate strategies to evade the immune system. HBV replicates like HIV (family of Retroviridae) via reverse transcription. Drugs licensed for inhibition of HIV reverse transcriptase lower the viral load of chronic HBV patients, but they do not cure the infection. HBV genomes are archived in the nucleus of hepatocytes as episomal DNA before reverse transcription. In contrast, the RNA genome of HIV first needs reverse transcription before proviral integration within the host genome. Wild-type HBV remains relatively stable in chronic HBV patients during the immunotolerant state, but is able to evolve mutants rapidly upon selective pressure due to therapy or immune reactions. Current therapies for chronic hepatitis B are far from optimal. To extend therapeutic options, further studies on HBV and its interaction with the host are urgently needed. © 2014 S. Karger AG, Basel.
    Intervirology 01/2014; 57(3-4):134-40. DOI:10.1159/000360946 · 1.77 Impact Factor

Full-text (2 Sources)

Available from
Sep 9, 2014