Article

X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7.

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
Molecular vision (Impact Factor: 2.25). 01/2007; 13:2233-41.
Source: PubMed

ABSTRACT Infantile nystagmus is a clinically and genetically heterogeneous eye movement disorder. Here we map and identify the genetic mutation underlying X-linked idiopathic infantile nystagmus (XL-IIN) segregating in two Caucasian-American families.
Eye movements were recorded using binocular infrared digital video-oculography. Genomic DNA was prepared from blood or buccal-cells, and linkage analysis was performed using short tandem repeat (STR) and single nucleotide polymorphism (SNP) markers. Pedigree and haplotype data were managed using Cyrillic, and LOD scores calculated using MLINK. Mutation profiling of PCR-amplified exons was performed by dye-terminator cycle-sequencing and analyzed by automated capillary electrophoresis.
Video-oculography of affected males recorded conjugate, horizontal, pendular nystagmus with increasing-velocity waveforms in primary gaze converting to jerk nystagmus in eccentric gaze. Linkage analysis detected significantly positive two-point LOD scores (Z) at markers DXS8078 (Z=4.82, recombination fraction [theta]=0) and DXS1047 (Z=3.87, theta=0). Haplotyping indicated that the IIN locus mapped to the physical interval DXS8057-(11.59 Mb)-rs6528335 on Xq25-q26. Sequencing of positional-candidate genes detected a c.425T>G transversion in exon-6 of the gene for FERM domain containing-7 (FRMD7) that cosegregated with affected and carrier status. In addition, the same change was found to cosegregate with IIN in a genetically unrelated family but was not detected in 192 control individuals.
The c.425T>G change is predicted to result in the missense substitution of the phylogenetically conserved leucine at codon 142 for an arginine (p.L142R), and supports a causative role for FRMD7 mutations in the pathogenesis of XL-IIN.

0 Bookmarks
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: FRMD7 mutations are associated with X-linked idiopathic congenital nystagmus (ICN); however, the underlying mechanisms whereby mutations of FRMD7 lead to ICN remain unclear. In a previous study, the first FRMD7 splice variant (FRMD7-S) was cloned and identified, and FRMD7-S was hypothesized to play a significant role in neuronal differentiation and development. The present study investigated a novel multiple exon-skipping mRNA splice variant of FRMD7, termed FRMD7_SV2, which was detected in NT2 cells using northern blotting. The mRNA expression levels of FRMD7_SV2 in the developing human fetal brain were examined using reverse transcription polymerase chain reaction (PCR), while the expression levels in NT2 cells treated with retinoid acid (RA) or bone morphogenetic protein-2 were investigated using quantitative PCR. The results revealed that the expression of FRMD7_SV2 was spatially and temporally restricted in human fetal brain development, and was upregulated upon RA-induced neuronal differentiation of the NT2 cells. These results indicated that as a novel splice variant of FRMD7, FRMD7_SV2 may play a role in neuronal development.
    Experimental and therapeutic medicine 10/2014; 8(4):1131-1136. DOI:10.3892/etm.2014.1916 · 0.94 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infantile nystagmus (IN) is characterized by bilateral involuntary, periodic, and predominantly ocular oscillations. In this article, we describe a mutation screen conducted on a 4-generation family in which 4 patients were affected with X-linked IN (XLIN). Experimental study. A 4-generation Chinese Han family including 4 symptomatic members with IN and 200 normal male controls. DNA was extracted from peripheral blood, and the FERM domain-containing 7 gene (FRMD7) was amplified on DNA samples of all the available family members. The mutation screen was conducted by performing direct DNA sequencing. A nonsense mutation (R335X) in the FRMD7 gene was identified in 4 male patients and an asymptomatic female member. Although the R335X mutation in the FRMD7 gene has been previously described, the clinical features, including both disease penetrance and severity, among individuals with FRMD7 mutation in our family vary greatly. One female member with the heterozygous R335X mutation had no clinical manifestation of the disease. This incomplete penetrance suggests that random X-chromosome inactivation may play a role in the pathogenesis of IN, and that loss of functional FRMD7 may account for the development of this disorder. Our findings may be helpful in the genetic counseling of patients with nystagmus.
    Canadian Journal of Ophthalmology 02/2014; 49(1):50-3. DOI:10.1016/j.jcjo.2013.09.001 · 1.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Erratum for: J Zhejiang Univ Sci B. 2013 June;14(6):479-486.
    Journal of Zhejiang University SCIENCE B 06/2013; 14(9):866. DOI:10.1631/jzus.B12e0259 · 1.11 Impact Factor

Preview

Download
1 Download
Available from