Article

Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state

Department of Gene and Cell Medicine, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
Journal of Experimental Medicine (Impact Factor: 13.91). 01/2008; 204(13):3133-46. DOI: 10.1084/jem.20071733
Source: PubMed

ABSTRACT Langerin is a C-type lectin receptor that recognizes glycosylated patterns on pathogens. Langerin is used to identify human and mouse epidermal Langerhans cells (LCs), as well as migratory LCs in the dermis and the skin draining lymph nodes (DLNs). Using a mouse model that allows conditional ablation of langerin(+) cells in vivo, together with congenic bone marrow chimeras and parabiotic mice as tools to differentiate LC- and blood-derived dendritic cells (DCs), we have revisited the origin of langerin(+) DCs in the skin DLNs. Our results show that in contrast to the current view, langerin(+)CD8(-) DCs in the skin DLNs do not derive exclusively from migratory LCs, but also include blood-borne langerin(+) DCs that transit through the dermis before reaching the DLN. The recruitment of circulating langerin(+) DCs to the skin is dependent on endothelial selectins and CCR2, whereas their recruitment to the skin DLNs requires CCR7 and is independent of CD62L. We also show that circulating langerin(+) DCs patrol the dermis in the steady state and migrate to the skin DLNs charged with skin antigens. We propose that this is an important and previously unappreciated element of immunosurveillance that needs to be taken into account in the design of novel vaccine strategies.

0 Followers
 · 
160 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells, macrophages and B cells are regarded as the classical antigen-presenting cells of the immune system. However, in recent years, there has been a rapid increase in the number of cell types that are suggested to present antigens on MHC class II molecules to CD4(+) T cells. In this Review, we describe the key characteristics that define an antigen-presenting cell by examining the functions of dendritic cells. We then examine the functions of the haematopoietic cells and non-haematopoietic cells that can express MHC class II molecules and that have been suggested to represent 'atypical' antigen-presenting cells. We consider whether any of these cell populations can prime naive CD4(+) T cells and, if not, question the effects that they do have on the development of immune responses.
    Nature reviews. Immunology 10/2014; 14(11). DOI:10.1038/nri3754 · 33.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Langerin is a C-type lectin expressed at high level by LCs of the epidermis. Langerin is also expressed by CD8(+)/CD103(+) XCR1(+) cross-presenting DCs of mice but is not found on the homologous human CD141(high) XCR1(+) myeloid DC. Here, we show that langerin is expressed at a low level on DCs isolated from dermis, lung, liver, and lymphoid tissue and that langerin(+) DCs are closely related to CD1c(+) myeloid DCs. They are distinguishable from LCs by the level of expression of CD1a, EpCAM, CD11b, CD11c, CD13, and CD33 and are found in tissues and tissue-draining LNs devoid of LCs. They are unrelated to CD141(high) XCR1(+) myeloid DCs, lacking the characteristic expression profile of cross-presenting DCs, conserved between mammalian species. Stem cell transplantation and DC deficiency models confirm that dermal langerin(+) DCs have an independent homeostasis to LCs. Langerin is not expressed by freshly isolated CD1c(+) blood DCs but is rapidly induced on CD1c(+) DCs by serum or TGF-β via an ALK-3-dependent pathway. These results show that langerin is expressed outside of the LC compartment of humans and highlight a species difference: langerin is expressed by the XCR1(+) "DC1" population of mice but is restricted to the CD1c(+) "DC2" population of humans (homologous to CD11b(+) DCs in the mouse). © Society for Leukocyte Biology.
    Journal of Leukocyte Biology 12/2014; DOI:10.1189/jlb.1HI0714-351R · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/β receptor (Ifnar-/-), which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103+ classical dendritic cells (cDCs), Ly6C- CD11b+ cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6Chigh monocytes from wild-type and Ifnar-/- origin to the DENV-infected dermis and differentiation to Ly6C+ CD11b+ monocyte-derived DCs (moDCs), which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6Chigh monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that ∼100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.
    PLoS Pathogens 12/2014; 10(12):e1004541. DOI:10.1371/journal.ppat.1004541 · 8.14 Impact Factor

Full-text (3 Sources)

Download
57 Downloads
Available from
May 29, 2014