Pax3 regulates Wnt1 expression via a conserved binding site in the 5′ proximal promoter

Genes and Development Group, Centres for Integrative Physiology and Neuroscience Research, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 03/2008; 1779(2):115-21. DOI: 10.1016/j.bbagrm.2007.11.008
Source: PubMed

ABSTRACT The development of the neural crest is orchestrated by a complex interplay between intercellular signalling molecules and transcription factors. Here, we demonstrate a direct interaction between two such factors, the paired-type transcription factor Pax3 and the secretory glycoprotein Wnt1. We found that the Wnt1 promoter can be regulated by Pax3 in a dose-dependent manner. Sequence analysis predicted a conserved binding site for Pax3 within the Wnt1 promoter region. Deletion or mutation of this sequence abolished the promoter response to Pax3. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated that Pax3 interacts with the Wnt1 promoter in vivo. These data indicate that Pax3 directly regulates the expression of Wnt1 in the developing embryo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WNT1 encodes a multifunctional signaling glycoprotein that is highly expressed in several malignant tumors. Patients with Wnt1-positive cancer are usually related to advanced metastasis. Here, we found that a stretch of G-rich sequences located at the WNT1 promoter region is capable of forming G-quadruplex structures. Addition of G-quadruplex structure stabilizers, BMVC and BMVC4, raising the melting temperature of the oligonucleotide formed by the WNT1 promoter G-rich sequences. Significantly, the expression of WNT1 was repressed by BMVC or BMVC4 in a G-quadruplex-dependent manner, suggesting that they can be used to modulate WNT1 expression. The role of G-quadruplex stabilizers on Wnt1-mediated cancer migration and invasion was further analyzed. The protein levels of β-catenin, a mediator of the Wnt-mediated signaling pathway, and the downstream targets MMP7 and survivin were down-regulated upon BMVC or BMVC4 treatments. Moreover, the migration and invasion activities of cancer cells were inhibited by BMVC and BMVC4, and the inhibitory effects can be reversed by WNT1-overexpression. Thus the Wnt1 expression and its downstream signaling pathways can be regulated through the G-quadruplex sequences located at its promoter region. These findings provide a novel approach for future drug development to inhibit migration and invasion of cancer cells.
    Journal of Biological Chemistry 04/2014; 289(21). DOI:10.1074/jbc.M114.548230 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Waardenburg syndrome (WS) is characterized by the association of pigmentation abnormalities, including depigmented patches of the skin and hair, vivid blue eyes or heterochromia irides, and sensorineural hearing loss. However, other features such as dystopia canthorum, musculoskeletal abnormalities of the limbs, Hirschsprung disease, or neurological defects are found in subsets of patients and used for the clinical classification of WS. Six genes are involved in this syndrome: PAX3 (encoding the paired box 3 transcription factor), MITF (microphthalmia-associated transcription factor), EDN3 (endothelin 3), EDNRB (endothelin receptor type B), SOX10 (encoding the Sry bOX10 transcription factor), and SNAI2 (snail homolog 2), with different frequencies. In this review we provide an update on all WS genes and set up mutation databases, summarize molecular and functional data available for each of them, and discuss the applications in diagnostics and genetic counseling. Hum Mutat 31, 1–16, 2010. © 2010 Wiley-Liss, Inc.
    Human Mutation 04/2010; 31(4):391 - 406. DOI:10.1002/humu.21211 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paired box homeotic gene 3 (PAX3) is a crucial regulator for the maintenance of melanocytic progenitor cells and has a poorly defined role in melanoma. To understand how PAX3 affects melanocyte and melanoma proliferation, we identified potential PAX3 downstream targets through gene expression profiling. Here we identify TBX2, a key developmental regulator of cell identity and an anti-senescence factor in melanoma, as a directly regulated PAX3 target. We also found that TBX2 is involved in the survival of melanoma cells, and is overexpressed in some melanoma specimens. The identification of TBX2 as a target for PAX3 provides a key insight into how PAX3 may contribute to melanoma evolution and may provide opportunities for pro-senescence therapeutic intervention aimed at disrupting the ability of PAX3 to regulate TBX2. © 2012 John Wiley & Sons A/S.
    Pigment Cell & Melanoma Research 09/2012; 26(1). DOI:10.1111/pcmr.12029 · 5.64 Impact Factor