Article

Melanoma cell sensitivity to Docetaxel-induced apoptosis is determined by class III beta-tubulin levels.

Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
FEBS Letters (Impact Factor: 3.58). 02/2008; 582(2):267-72. DOI: 10.1016/j.febslet.2007.12.014
Source: PubMed

ABSTRACT We have previously shown that Docetaxel-induced variable degrees of apoptosis in melanoma. In this report, we studied the beta-tubulin repertoire of melanoma cell lines and show that class III beta-tubulin expression correlated with Docetaxel-resistance. Sensitive cells showed low levels of class III beta-tubulin with little microtubular incorporation, whereas class III beta-tubulin expression was higher in resistant cells and was incorporated into the cytoskeleton. As proof of concept, abrogation of class III by siRNA reverted Docetaxel-resistant cells to a sensitive phenotype, restoring the microtubular polymerisation response and promoting high levels of apoptosis through Bax activation. These results suggest that phenotypic expression of beta-tubulin class III in melanoma may help identify patients with melanoma that can respond to taxanes.

1 Bookmark
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.
    International Journal of Radiation Biology. 02/2013; 89(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The caspase family of proteases cleaves large number of proteins resulting in major morphological and biochemical changes during apoptosis. Yet, only a few of these proteins have been reported to selectively cleaved by caspase-2. Numerous observations link caspase-2 to the disruption of the cytoskeleton, although it remains elusive whether any of the cytoskeleton proteins serve as bona fide substrates for caspase-2. Here, we undertook an unbiased proteomic approach to address this question. By differential proteome analysis using two-dimensional gel electrophoresis, we identified four cytoskeleton proteins that were degraded upon treatment with active recombinant caspase-2 in vitro. These proteins were degraded in a caspase-2-dependent manner during apoptosis induced by DNA damage, cytoskeleton disruption or endoplasmic reticulum stress. Hence, degradation of these cytoskeleton proteins was blunted by siRNA targeting of caspase-2 and when caspase-2 activity was pharmacologically inhibited. However, none of these proteins was cleaved directly by caspase-2. Instead, we provide evidence that in cells exposed to apoptotic stimuli, caspase-2 probed these proteins for proteasomal degradation. Taken together, our results depict a new role for caspase-2 in the regulation of the level of cytoskeleton proteins during apoptosis.
    Cell Death & Disease 12/2013; 4:e940. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are dynamic structures composed of alpha-beta-tubulin heterodimers that are essential in cell division and are important targets for cancer drugs. Mutations in beta-tubulin that affect microtubule polymer mass and/or drug binding are associated with resistance to tubulin-binding agents such as paclitaxel. The aberrant expression of specific beta-tubulin isotypes, in particular betaIII-tubulin, or of microtubule-regulating proteins is important clinically in tumour aggressiveness and resistance to chemotherapy. In addition, changes in actin regulation can also mediate resistance to tubulin-binding agents. Understanding the molecular mechanisms that mediate resistance to tubulin-binding agents will be vital to improve the efficacy of these agents.
    Nature Reviews Cancer 02/2010; 10(3):194-204. · 29.54 Impact Factor

Full-text

Download
25 Downloads
Available from
May 22, 2014