Article

NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER stress and PUMA independent manner.

Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
Journal of Neurochemistry (Impact Factor: 3.97). 06/2008; 105(3):891-903. DOI: 10.1111/j.1471-4159.2007.05187.x
Source: PubMed

ABSTRACT Disruption of endoplasmic reticulum (ER) Ca2+ homeostasis and ER dysfunction have been suggested to contribute to excitotoxic and ischaemic neuronal injury. Previously, we have characterized the neural transcriptome following ER stress and identified the BH3-only protein, p53 up-regulated mediator of apoptosis (PUMA), as a central mediator of ER stress toxicity. In this study, we investigated the effects of excitotoxic injury on ER Ca2+ levels and induction of ER stress responses in models of glutamate- and NMDA-induced excitotoxic apoptosis. While exposure to the ER stressor tunicamycin induced an ER stress response in cerebellar granule neurons, transcriptional activation of targets of the ER stress response, including PUMA, were absent following glutamate-induced apoptosis. Confocal imaging revealed no long-term changes in the ER Ca2+ level in response to glutamate. Murine cortical neurons and organotypic hippocampal slice cultures from PUMA+/+ and PUMA-/- animals provided no evidence of ER stress and did not differ in their sensitivity to NMDA. Finally, NMDA-induced excitotoxic apoptosis in vivo was not associated with ER stress, nor did deficiency in PUMA alleviate the injury induced. Our data suggest that NMDA receptor-mediated excitotoxic apoptosis occurs in vitro and in vivo in an ER stress and PUMA independent manner.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition with no cure. Mitochondrial dysfunction, Ca(2+) overloading and local hypoxic/ischemic environments have been implicated in the pathophysiology of ALS and are conditions that may initiate metabolic acidosis in the affected tissue. We tested the hypothesis that acidotoxicity and acid-sensing ion channels (ASICs) are involved in the pathophysiology of ALS. We found that motoneurons were selectively vulnerable to acidotoxicity in vitro, and that acidotoxicity was partially reduced in asic1a-deficient motoneuron cultures. Cross-breeding of SOD1(G93A) ALS mice with asic1a-deficient mice delayed the onset and progression of motor dysfunction in SOD1 mice. Interestingly, we also noted a strong increase in ASIC2 expression in motoneurons of SOD1 mice and sporadic ALS patients during disease progression. Pharmacological pan-inhibition of ASIC channels with the lipophilic amiloride derivative, 5-(N,N-dimethyl)-amiloride hydrochloride, potently protected cultured motoneurons against acidotoxicity, and, given post-symptom onset, significantly improved lifespan, motor performance and motoneuron survival in SOD1 mice. Together, our data provide strong evidence for the involvement of acidotoxicity and ASIC channels in motoneuron degeneration, and highlight the potential of ASIC inhibitors as a new treatment approach for ALS.Cell Death and Differentiation advance online publication, 11 January 2013; doi:10.1038/cdd.2012.158.
    Cell death and differentiation 01/2013; · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-D-aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA-induced, excitotoxic injury to the hippocampus results in an increase in neurogenesis within the dentate gyrus. Here we have characterized adult neurogenesis or proliferation, using BrdU, in an in vivo model of excitotoxic injury to the CA1 subfield of the hippocampus. We demonstrate a peak in neural stem cell proliferation/neurogenesis between 6 and 9 days after the excitotoxic insult. Treatment with ifenprodil, an NR2B subunit-specific NMDA receptor antagonist, without prior injury induction, also increased the number of BrdU-positive cells within the DG and posterior periventricle, indicating that ifenprodil itself could modulate the rate of proliferation. Interestingly, though, the increased level of cell proliferation did not change significantly when ifenprodil was administered following an excitotoxic insult. In conclusion, our results suggest and add to the growing evidence that NR2B subunit-containing NMDA receptors play a role in neural stem cell proliferation. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 01/2014; · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secondary bile acids produced by enteric bacteria accumulate to high levels in the enterohepatic circulation and may contribute to the pathogenesis of hepatocellular injury. Relative hydrophobicity has been suggested to be an important determinant of the biological properties of these compounds, although the mechanism by which bile acids induce pathogenesis is not fully understood. On the other hand, endoplasmic reticulum stress has been shown to be involved in the induction and development of various pathogenic conditions. In this report, we demonstrated that the intensities of cytotoxicity and endoplasmic reticulum stress in HepG2 cells triggered by the bile acids tested were largely dependent on their hydrophobicity. The activation of caspase-3 and DNA fragmentation by treatment with chenodeoxycholic acid showed the contribution of apoptosis to cytotoxicity. Increases in intracellular calcium levels and the generation of reactive oxygen species stimulated by treatment with chenodeoxycholic acid contributed to endoplasmic reticulum stress. Bile acids also induced transforming growth factor-β, a potent profibrogenic factor, which is known to induce hepatocyte apoptosis and ultimately liver fibrosis. In conclusion, our study demonstrated that bile acids induced endoplasmic reticulum stress, which in turn stimulated apoptosis in HepG2 cells, in a hydrophobicity-dependent manner.
    Journal of Clinical Biochemistry and Nutrition 03/2014; 54(2):129-35. · 2.25 Impact Factor

Full-text

View
42 Downloads
Available from
Jun 6, 2014