Article

NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER stress and PUMA independent manner

Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
Journal of Neurochemistry (Impact Factor: 4.24). 06/2008; 105(3):891-903. DOI: 10.1111/j.1471-4159.2007.05187.x
Source: PubMed

ABSTRACT Disruption of endoplasmic reticulum (ER) Ca2+ homeostasis and ER dysfunction have been suggested to contribute to excitotoxic and ischaemic neuronal injury. Previously, we have characterized the neural transcriptome following ER stress and identified the BH3-only protein, p53 up-regulated mediator of apoptosis (PUMA), as a central mediator of ER stress toxicity. In this study, we investigated the effects of excitotoxic injury on ER Ca2+ levels and induction of ER stress responses in models of glutamate- and NMDA-induced excitotoxic apoptosis. While exposure to the ER stressor tunicamycin induced an ER stress response in cerebellar granule neurons, transcriptional activation of targets of the ER stress response, including PUMA, were absent following glutamate-induced apoptosis. Confocal imaging revealed no long-term changes in the ER Ca2+ level in response to glutamate. Murine cortical neurons and organotypic hippocampal slice cultures from PUMA+/+ and PUMA-/- animals provided no evidence of ER stress and did not differ in their sensitivity to NMDA. Finally, NMDA-induced excitotoxic apoptosis in vivo was not associated with ER stress, nor did deficiency in PUMA alleviate the injury induced. Our data suggest that NMDA receptor-mediated excitotoxic apoptosis occurs in vitro and in vivo in an ER stress and PUMA independent manner.

Download full-text

Full-text

Available from: Caroline Bonner, Jun 27, 2015
0 Followers
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as "ER stress". Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
    Biochimica et Biophysica Acta 11/2010; 1813(4):564-74. DOI:10.1016/j.bbamcr.2010.11.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteasomal stress is believed to contribute to the pathology of ischemic brain injury and several neurodegenerative disorders, but can activate both cytoprotective and cell death-inducing pathways. Here we have utilized the complex environment of organotypic hippocampal slice cultures (OHSCs) to investigate the stress responses activated in different neuronal populations following proteasome inhibition. Incubation of OHSCs with the specific proteasome inhibitors, epoxomicin or bortezomib led to a selective injury of the CA1 pyramidal neurons although similarly increased levels of poly-ubiquitinylated proteins were detected throughout all regions of the hippocampus. Micro-dissection, quantitative PCR and immunohistochemical analyses of epoxomicin-treated OHSCs identified a selective activation of cytoprotective genes in non-vulnerable regions, and a selective activation of p53 target genes within the CA1. Genetic deletion of the pro-apoptotic p53 target gene, p53-upregulated modulator of apoptosis (puma), significantly reduced injury within the CA1 following proteasomal inhibition. Activation of cytoprotective genes by treatment with inducers of heat shock protein 70 inhibited the selective activation of p53 signaling within the CA1 and protected CA1 neurons from epoxomicin-induced cell death. In summary, we demonstrate that the reciprocal activation of p53/p53-upregulated modulator of apoptosis and heat shock protein 70 signalling determines the selective vulnerability of neurons to proteasome inhibition.
    Journal of Neurochemistry 07/2010; 114(2):606-16. DOI:10.1111/j.1471-4159.2010.06790.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolonged seizures (status epilepticus) can activate apoptosis-associated signaling pathways. The extent to which such pathways contribute to cell death might depend on the insult intensity, whereby the programmed or apoptotic cell death component is reduced when seizures are more severe or protracted. We recently showed that mice lacking the pro-apoptotic Bcl-2 homology domain 3-only protein Puma (Bbc3) were potently protected against damage caused by status epilepticus. In the present study we examined whether Puma deficiency was protective when the seizure episode was more severe. Intra-amygdala microinjection of 1 microg kainic acid (KA) into C57BL/6 mice triggered status epilepticus that lasted about twice as long as with 0.3 microg KA prior to lorazepam termination. Hippocampal damage was also significantly greater in the higher-dose group. Over 80% of degenerating neurons after seizures were positive for DNA fragmentation assessed by terminal deoxynucleotidyl dUTP nick end labeling (TUNEL). Microscopic analysis of neuronal nuclear morphology in TUNEL-positive cells revealed the proportion displaying large rounded clumps of condensed chromatin was approximately 50% lower in the high-dose versus low-dose KA group. Nevertheless, compared to heterozygous and wild-type mice subject to status epilepticus by high-dose KA, neuronal death was reduced by approximately 50% in the hippocampus of Puma-deficient mice. These data suggest aspects of the apoptotic component of seizure-induced neuronal death are insult duration- or severity-dependent. Moreover, they provide further genetic evidence that seizure-induced neuronal death is preventable by targeting so-called apoptosis-associated signaling pathways and Puma loss likely disrupts caspase-independent or non-apoptotic seizure-induced neuronal death.
    Neuroscience 03/2010; 168(2):443-50. DOI:10.1016/j.neuroscience.2010.03.057 · 3.33 Impact Factor