Article

NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER Stress and PUMA independent manner

Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
Journal of Neurochemistry (Impact Factor: 4.24). 06/2008; 105(3):891-903. DOI: 10.1111/j.1471-4159.2007.05187.x
Source: PubMed

ABSTRACT Disruption of endoplasmic reticulum (ER) Ca2+ homeostasis and ER dysfunction have been suggested to contribute to excitotoxic and ischaemic neuronal injury. Previously, we have characterized the neural transcriptome following ER stress and identified the BH3-only protein, p53 up-regulated mediator of apoptosis (PUMA), as a central mediator of ER stress toxicity. In this study, we investigated the effects of excitotoxic injury on ER Ca2+ levels and induction of ER stress responses in models of glutamate- and NMDA-induced excitotoxic apoptosis. While exposure to the ER stressor tunicamycin induced an ER stress response in cerebellar granule neurons, transcriptional activation of targets of the ER stress response, including PUMA, were absent following glutamate-induced apoptosis. Confocal imaging revealed no long-term changes in the ER Ca2+ level in response to glutamate. Murine cortical neurons and organotypic hippocampal slice cultures from PUMA+/+ and PUMA-/- animals provided no evidence of ER stress and did not differ in their sensitivity to NMDA. Finally, NMDA-induced excitotoxic apoptosis in vivo was not associated with ER stress, nor did deficiency in PUMA alleviate the injury induced. Our data suggest that NMDA receptor-mediated excitotoxic apoptosis occurs in vitro and in vivo in an ER stress and PUMA independent manner.

Download full-text

Full-text

Available from: Caroline Bonner, Sep 01, 2015
0 Followers
 · 
114 Views
 · 
79 Downloads
  • Source
    • "Before proceeding, we assessed the degree of cell death in our primary cortical neurons in normal culture conditions to be 24±2% - a level of basal death that is frequently observed in 10–11 DIV primary neuronal cultures [57]–[60]. To establish the appropriate duration of an OGD insult required to induce neuronal cell death, cortical neurons were exposed to control EBSS containing oxygen and glucose (EBSS+Oxygen+Glucose) or EBSS depleted of oxygen and glucose (OGD) for 2, 4 or 6 h. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke, the loss of neurons after ischemic insult to the brain, is one of the leading causes of death and disability worldwide. Despite its prevalence and severity, current therapy is extremely limited, highlighting the importance of further understanding the molecular events underlying ischemia-induced neuronal cell death. An ischemic area can be subdivided into two separate pathophysiological regions: the rapidly dying necrotic core, and the potentially salvageable apoptotic penumbra. Understanding molecular events occurring in the apoptotic ischemic penumbra may give greater insight into mechanisms controlling this salvageable tissue. miRNAs are known to have key roles in the regulation of gene expression in numerous pathological conditions, including the modulation of distinct pathways in stroke. However, previous studies have profiled miRNAs in the whole ischemic infarct, and do not differentiate between miRNA regulation in the necrotic core versus the apoptotic penumbra. We asked if there were unique miRNAs that are differentially regulated following ischemic insults in the salvageable apoptotic penumbra. miRNA expression profiles were compared in the whole infarct from in vivo stroke models, using the three vessel occlusion approach, to an in vitro model of the ischemic penumbra, prior to apoptotic induction. Multiple miRNAs were found to be differentially regulated following ischemic insults in each system. However, miR-19b, miR-29b-2* and miR-339-5p were significantly up-regulated in both model systems. Further, we confirmed these results in a neuroblastoma cell line subjected to a penumbra-like ischemic insult that induced the apoptotic cell death pathway. The data show that miR-19b, miR-29b-2* and miR-339-5p are up-regulated following ischemic insults and may be regulating gene expression to control important cellular pathways in the salvageable ischemic penumbra. Further investigation of their role and mRNA target identification may lead to new insights into the molecular mechanisms taking place in the salvageable apoptotic penumbra.
    PLoS ONE 12/2013; 8(12):e83717. DOI:10.1371/journal.pone.0083717 · 3.23 Impact Factor
  • Source
    • "ER stress is implicated as a patho-mechanism underlying neurodegeneration in several diseases, including epilepsy [44], although NMDA receptor-induced neuronal death can occur independently of ER stress in vivo [45]. Studies here demonstrated that overexpressed 14-3-3ζwas capable of protecting against ER stress induced by tunicamycin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
    PLoS ONE 01/2013; 8(1):e54491. DOI:10.1371/journal.pone.0054491 · 3.23 Impact Factor
  • Source
    • "Consequently, the first steps in the death pathways downstream of ER stress may represent important therapeutic targets. In addition, BH3-only proteins, such as BIM and PUMA, have been implicated in Alzheimer's disease [25], Huntington's disease [169] [170] and ALS [171] [172], in addition to brain ischemia [173] [174] [175] in vivo. Thus, pharmacological manipulation of BCL-2 protein family activity may be beneficial in the treatment of these fatal diseases related to ER stress. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as "ER stress". Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
    Biochimica et Biophysica Acta 11/2010; 1813(4):564-74. DOI:10.1016/j.bbamcr.2010.11.012 · 4.66 Impact Factor
Show more