Quercetin inhibits choroidal and retinal angiogenesis in vitro.

Department of Ophthalmology, People's Hospital of Peking University, Beijing 100044, People's Republic of China.
Albrecht von Graæes Archiv für Ophthalmologie (Impact Factor: 1.93). 04/2008; 246(3):373-8. DOI: 10.1007/s00417-007-0728-9
Source: PubMed

ABSTRACT Quercetin is a natural substance found abundantly in grapes, red wine and other food products. In this study, we examined the effect of quercetin on choroidal and retinal angiogenesis in vitro using rhesus choroids-retina endothelial cell line (RF/6A).
RF/6A cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum. Then cells were treated with different concentrations (from 0 to 100 microM) of quercetin. The cell proliferation was assessed using choromogenic methylthiazol tetrazolium bromide (MTT) dye after 24, 48 and 72 hours. Cell migration after 24-hour incubation with quercetin was investigated by wound assay. Following exposure to the various concentrations of quercetin for 24 hours, tube formation on matrigel by endothelial cells was also analyzed. Apoptosis was measured by flow cytometry using annexin V-FITC and propidium iodide staining.
Quercetin inhibits endothelial cell proliferation in a dose-dependent fashion; 10.1%, 42.6% and 65.2% inhibition on treating with 10, 50 and 100 microM Quercetin respectively. The migration and tube formation of RA/6A cells were also significantly inhibited by quercetin in a dose-dependent manner. Flow cytometric analysis showed that the percentages of apoptotic cells were slightly increased only in 100 microM quercetin-treated cells.
Our results show that quercetin inhibits choroidal and retinal angiogenesis in vitro. Further studies are ongoing to evaluate this drug as a potential candidate for the treatment of choroidal or retinal neovascularization.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF-induced human retinal endothelial cells (HREC) growth and tube formation. HRECs were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer. Stimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation. Our results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD.
    Journal of diabetes and its complications 05/2012; 26(5):369-77. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate the effects of Quercetin (Qctn), a plant based flavonol, on retinal oxidative stress, neuroinflammation and apoptosis in streptozotocin-induced diabetic rats. Qctn treatment (25- and 50 mg/kg body weight) was given orally for six months in diabetic rats. Retinal glutathione (GSH) and antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] were estimated using commercially available assays, and inflammatory cytokines levels [tumour necrosis factor-α (TNF-α), Interleukin-1β (IL-1β)] were estimated by ELISA method. Immunofluorescence and western blot studies were performed for nuclear factor kappa B (NF-kB), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4(AQP4) expressions. Structural changes were evaluated by light microscopy. In the present study, retinal GSH levels and antioxidant enzyme (SOD and CAT) activities were significantly decreased in diabetic group as compared to normal group. However, in Qctn-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of antioxidant enzyme activities was observed. Diabetic retinas showed significantly increased expression of pro-inflammatory cytokines (TNF-α and IL-1β) as compared to that in normal retinas, while Qctn-treated retinas showed significantly lower levels of cytokines as compared to diabetic retinas. Light microscopy showed significantly increased number of ganglion cell death and decreased retinal thickness in diabetic group compared to those in normal retina; however, protective effect of Qctn was seen. Increased apoptosis in diabetic retina is proposed to be mediated by overexpression of NF-kB and caspase-3. However, Qctn showed inhibitory effects on NF-kB and caspase-3 expression. Microglia showed upregulated GFAP expression, and inflammation of Müller cells resulted in edema in their endfeet and around perivascular space in nerve fibre layer in diabetic retina, as observed through AQP4 expression. However, Qctn treatments inhibited diabetes-induced increases in GFAP and AQP4 expression. Based on these findings, it can be concluded that bioflavonoids, such as Qctn can be effective for protection of diabetes induced retinal neurodegeneration and oxidative stress.
    Experimental Eye Research 06/2014; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
    Progress in Retinal and Eye Research 01/2014; · 9.44 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014