Elevated Risk of Carrying Gentamicin-Resistant Escherichia coli among U.S. Poultry Workers

The Johns Hopkins University School of Medicine, Baltimore, MD 21224-2780, USA.
Environmental Health Perspectives (Impact Factor: 7.98). 01/2008; 115(12):1738-42. DOI: 10.1289/ehp.10191
Source: PubMed


Antimicrobial use in food-animal production is an issue of growing concern. The application of antimicrobials for therapy, prophylaxis, and growth promotion in broiler chicken production has been associated with the emergence and dissemination of antimicrobial-resistant enteric bacteria. Although human exposure to antimicrobial-resistant bacteria through food has been examined extensively, little attention has been paid to occupational and environmental pathways of exposure.
Our objective was to measure the relative risk for colonization with antimicrobial-resistant Escherichia coli among poultry workers compared with community referents.
We collected stool samples and health surveys from 16 poultry workers and 33 community referents in the Delmarva region of Maryland and Virginia. E. coli was cultured from stool samples, and susceptibility to ampicillin, ciprofloxacin, ceftriaxone, gentamicin, nitrofurantoin, and tetracycline was determined for each E. coli isolate. We estimated the relative risk for carrying antimicrobial-resistant E. coli among poultry workers compared with community referents.
Poultry workers had 32 times the odds of carrying gentamicin-resistant E. coli compared with community referents. The poultry workers were also at significantly increased risk of carrying multidrug-resistant E. coli.
Occupational exposure to antimicrobial-resistant E. coli from live-animal contact in the broiler chicken industry may be an important route of entry for antimicrobial-resistant E. coli into the community.

Download full-text


Available from: Ellen Silbergeld,
  • Source
    • "In addition to natural selection and horizontal gene transfer as mechanisms for resistance, sublethal bactericidal antibiotic use at doses below those expected to provide overt selective pressure induces mutations in bacterial genomes that may confer antibiotic resistance (Kohanski et al. 2010). Humans are exposed to anti biotic-resistant bacteria through many pathways, including direct animal contact (Price et al. 2007a), contact with environmental media, such as soil, water, and air, contaminated with animal waste (Graham et al. 2009), and consumption or handling of contaminated food products from animals raised with antibiotics (FDA 2010e; Johnson et al. 2009). Use of medicated feed has been demonstrated to introduce residual antimicrobials and their metabolites into the waste streams of animal operations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Industrial food animal production employs many of the same antibiotics or classes of antibiotics that are used in human medicine. These drugs can be administered to food animals in the form of free-choice medicated feeds (FCMF), where animals choose how much feed to consume. Routine administration of these drugs to livestock selects for microorganisms that are resistant to medications critical to the treatment of clinical infections in humans. In this commentary, we discuss the history of medicated feeds, the nature of FCMF use with regard to dose delivery, and U.S. policies that address antimicrobial drug use in food animals. FCMF makes delivering a predictable, accurate, and intended dose difficult. Overdosing can lead to animal toxicity; underdosing or inconsistent dosing can result in a failure to resolve animal diseases and in the development of antimicrobial-resistant microorganisms. The delivery of antibiotics to food animals for reasons other than the treatment of clinically diagnosed disease, especially via free-choice feeding methods, should be reconsidered.
    Environmental Health Perspectives 10/2010; 119(3):279-83. DOI:10.1289/ehp.1002625 · 7.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two types of new effective instruments for recovering the visual strain of the VDT operator caused by continuous VDT operations are described. Both the instrument for measuring the achromatic color using the complementary color and the instrument for measuring the recovery of the visual accommodation function using the picture of virtual far point, are developed. These two kinds of instruments are useful for the recovery of visual strain
    Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE; 02/2000
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Use of antimicrobial feed additives in food animal production is associated with selection for drug resistance in bacterial pathogens, which can then be released into the environment through occupational exposures, high volume ventilation of animal houses, and land application of animal wastes. We tested the hypothesis that current methods of transporting food animals from farms to slaughterhouses may result in pathogen releases and potential exposures of persons in vehicles traveling on the same road. Air and surface samples were taken from cars driving behind poultry trucks for 17 miles. Air conditioners and fans were turned off and windows fully opened. Background and blank samples were used for quality control. Samples were analyzed for susceptible and drug-resistant strains. Results indicate an increase in the number of total aerobic bacteria including both susceptible and drug-resistant enterococci isolated from air and surface samples, and suggest that food animal transport in open crates introduces a novel route of exposure to harmful microorganisms and may disseminate these pathogens into the general environment. These findings support the need for further exposure characterization, and attention to improving methods of food animal transport, especially in highly trafficked regions of high density farming such as the Delmarva Peninsula.
    01/2008; 1(1):33-9. DOI:10.1016/j.jiph.2008.08.001
Show more