Article

Safety, tolerability, pharmacokinetics, and Abeta levels after short-term administration of R-flurbiprofen in healthy elderly individuals.

Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Alzheimer Disease and Associated Disorders (Impact Factor: 2.69). 09/2007; 21(4):292-9. DOI: 10.1097/WAD.0b013e31815d1048
Source: PubMed

ABSTRACT To evaluate the safety and tolerability and pharmacokinetic properties of R-flurbiprofen (Tarenflurbil) in normal elderly individuals and to determine the effect of the drug on amyloid beta 42 (Abeta42) levels, we conducted a double-blind, placebo-controlled study of 48 healthy subjects aged 55 to 80. Three successive cohorts were randomized to doses of 400, 800, or 1600 mg/d, or placebo, given as 2 divided doses for 21 days. Blood and cerebrospinal fluid were collected for pharmacokinetic studies and measurement of Abeta levels at baseline and on day 21. R-flurbiprofen was well-tolerated at all 3 doses. The compound penetrated the blood-brain barrier in a dose-dependent manner. From baseline to 21 days, comparisons between study groups revealed no significant differences in changes of cerebrospinal fluid Abeta42 levels and no significant differences in changes of plasma Abeta42 levels at the time of trough drug level at 21 days of treatment. Further analysis of drug concentration-response for plasma samples showed that at the time of peak plasma concentration, higher plasma drug concentration was related to lower Abeta42 plasma levels (P=0.016). R-flurbiprofen had an excellent safety profile and showed dose-dependent central nervous system penetration. Exploratory analyses of plasma Abeta and peak drug levels suggested a short-term effect in plasma that warrants independent verification. The safety, tolerability, and pharmacokinetic profile of R-flurbiprofen in these older individuals support the ongoing studies of this compound in patients with Alzheimer disease.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-β peptide (Aβ), particularly the 42-amino acid Aβ1-42, in the brain. Aβ1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aβ production. BMS-869780 is a potent GSM that decreased Aβ1-42 and Aβ1-40 and increased Aβ1-37 and Aβ1-38, without inhibiting overall levels of Aβ peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aβ1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aβ1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aβ1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aβ1-42 without Notch-related side effects.
    International Journal of Alzheimer’s Disease. 01/2014; 2014:22.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.
    EMBO Molecular Medicine 09/2014; · 7.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease.
    BioMed Research International 01/2014; 2014:837157. · 2.71 Impact Factor