Auditory scene analysis following unilateral inferior colliculus infarct

School of Audiology and Speech Language Pathology, University of Montreal, Quebec, Canada.
Neuroreport (Impact Factor: 1.52). 12/2007; 18(17):1793-6. DOI: 10.1097/WNR.0b013e3282f1a96d
Source: PubMed


Event-related potentials in the form of mismatch negativity were recorded to investigate auditory scene analysis capabilities in a person with a very circumscribed haemorrhagic lesion at the level of the right inferior colliculus. The results provide the first objective evidence that processing at the level of the inferior colliculus plays an important role in human auditory frequency discrimination. Moreover, the electrophysiological data suggest that following this unilateral lesion, the auditory pathways fail to reorganize efficiently.

7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate cortical activation in response to binaural stimulus presentations in an individual (FX) with a circumscribed traumatic hemorrhagic lesion of the right inferior colliculus. FX and control subjects were exposed to complex sounds while undergoing a functional magnetic resonance imaging assessment. Whereas normally-hearing individuals show well-balanced bilateral activation patterns in response to binaural auditory stimulation, the same stimuli produced stronger activation in the left hemisphere in FX. Combined with previous data, these findings reinforce the notion that the inferior colliculus is an essential auditory relay and that its loss cannot be significantly compensated.
    Neurocase 02/2009; 15(2):89-96. DOI:10.1080/13554790802620566 · 1.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown tau pathology in the inferior colliculus (IC) and superior colliculus (SC) in Alzheimer's disease (AD); however, it has not been compared to other tauopathies, such as progressive supranuclear palsy (PSP), or characterized with respect to progression of tau pathology in AD. The main purpose of this study was to investigate frequency, neuroanatomical selectivity and disease specificity of tau pathology in visual and auditory nuclei (SC and lateral geniculate body (LGB); IC and medial geniculate body (MGB), respectively). We measured phospho-tau burden with immunohistochemistry and image analysis in 26 cases of AD, 37 PSP and 11 normal controls. Tau burden was also assessed in two unrelated brainstem nuclei (substantia nigra (SN) and pedunculopontine nucleus (PPN)) of the same cases. We found tau burden to be greater in the SC of PSP compared to AD and controls. Conversely, tau burden was greater in the IC of AD compared to PSP and controls. The MGB and LGB had sparse tau pathology in both AD and PSP. This disease selectivity parallels known deficits in visual reflexes in PSP and auditory reflexes in AD. Tau burden was greater in the SC, IC, and PPN in both PSP and AD compared to controls, and greater in the SN in PSP compared to AD and controls. Although present at early Braak neurofibrillary tangle stages, the SC, IC, PPN and SN did not accumulate tau consistently until later stages. These findings support a concept of tau pathology affecting the brainstem at mid-to-late stage AD.
    Neuroscience Letters 03/2011; 491(2):122-6. DOI:10.1016/j.neulet.2011.01.020 · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Auditory processing can be disrupted by brainstem lesions. It is estimated that approximately 57% of brainstem lesions are associated with auditory disorders. However diseases of the brainstem usually involve many structures, producing a plethora of other neurologic deficits, often relegating "auditory symptoms in the background." Lesions below or within the cochlear nuclei result in ipsilateral auditory-processing abnormalities detected in routine testing; disorders rostral to the cochlear nuclei may result in bilateral abnormalities or may be silent. Lesions in the superior olivary complex and trapezoid body show a mixture of ipsilateral, contralateral, and bilateral abnormalities, whereas lesions of the lateral lemniscus, inferior colliculus, and medial geniculate body do not affect peripheral auditory processing and result in predominantly subtle contralateral abnormalities that may be missed by routine auditory testing. In these cases psychophysical methods developed for the evaluation of central auditory function should be employed (e.g., dichotic listening, interaural time perception, sound localization). The extensive connections of the auditory brainstem nuclei not only are responsible for binaural interaction but also assure redundancy in the system. This redundancy may explain why small brainstem lesions are sometimes clinically silent. Any disorder of the brainstem (e.g., neoplasms, vascular disorders, infections, trauma, demyelinating disorders, neurodegenerative diseases, malformations) that involves the auditory pathways and/or centers may produce hearing abnormalities. © 2015 Elsevier B.V. All rights reserved.
    Handbook of Clinical Neurology 12/2015; 129C:509-536. DOI:10.1016/B978-0-444-62630-1.00029-9

Similar Publications