Developmental programming: impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep.

Department of Pediatrics, the Reproductive Sciences Program, and the Center for Statistical Consultation and Research, University of Michigan, Ann Arbor, Michigan 48109-0404, USA.
Biology of Reproduction (Impact Factor: 3.45). 05/2008; 78(4):648-60. DOI: 10.1095/biolreprod.107.063347
Source: PubMed

ABSTRACT The goal of this study was to explore mechanisms that mediate hypersecretion of LH and progressive loss of cyclicity in female sheep exposed during fetal life to excess testosterone. Our working hypothesis was that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH (but not FSH) secretion and, thus, hypersecretion of LH in adulthood, and that this results from altered developmental gene expression of GnRH and estradiol (E2) receptors, gonadotropin subunits, and paracrine factors that differentially regulate LH and FSH synthesis. We observed that, relative to controls, females exposed during fetal life to excess testosterone, as well as the nor-aromatizable androgen dihydrotestosterone, exhibited enhanced LH but not FSH responses to intermittent delivery of GnRH boluses under conditions in which endogenous LH (GnRH) pulses were suppressed. Luteinizing hormone hypersecretion was more evident in adults than in prepubertal females, and it was associated with development of acyclicity. Measurement of pituitary mRNA concentrations revealed that prenatal testosterone excess induced developmental changes in gene expression of pituitary GnRH and E2 receptors and paracrine modulators of LH and FSH synthesis in a manner consistent with subsequent amplification of LH release. Together, this series of studies suggests that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH response, leading to LH hypersecretion and acyclicity in adulthood, and that this programming involves developmental changes in expression of pituitary genes involved in LH and FSH release.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
    Frontiers in Neuroendocrinology 04/2014; · 7.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS), the most common endocrine disorder among women of reproductive age, is characterized by the coexistence of hyperandrogenism, ovulatory dysfunction, and polycystic ovaries (PCO). PCOS also represents the largest part of female oligoovulatory infertility, and the management of ovulatory and menstrual dysfunction, comprises a third of the high costs of PCOS treatment. Current pharmacological and surgical treatments for reproductive symptoms are effective, however, associated with negative side effects, such as cardiovascular complications and multiple pregnancies. For menstrual irregularities and ovulation induction in women with PCOS, acupuncture has indicated beneficial effects. This review will focus on the results from randomized controlled acupuncture trials for regulation of menstrual dysfunction and for inducing ovulation in women with PCOS although there are uncontrolled trials with nonetheless interesting results. Animal experimental studies will be further discussed when they can provide a more mechanistic explanatory view.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:762615. · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal exposure to increased androgens has been implicated in both polycystic ovary syndrome (PCOS) and autism spectrum conditions (ASC), suggesting that PCOS may be increased among women with ASC. One study suggested elevated steroidopathic symptoms ('steroidopathy') in women with ASC. As the symptoms are not independent, we conducted a latent class analysis (LCA). The objectives of the current study are: (1) to test if these findings replicate in a larger sample; and (2) to use LCA to uncover affected clusters of women with ASC. We tested two groups of women, screened using the Autism Spectrum Quotient - Group 1: n = 415 women with ASC (mean age 36.39 +/- 11.98 years); and Group 2: n = 415 controls (mean age 39.96 +/- 11.92 years). All participants completed the Testosterone-related Medical Questionnaire online. A multiple-group LCA was used to identify differences in latent class structure between women with ASC and controls. There were significant differences in frequency of steroid-related conditions and symptoms between women with ASC and controls. A two-class semi-constrained model best fit the data. Based on response patterns, we identified the classes as 'Typical' and 'Steroidopathic'. The prevalence of the 'Steroidopathic' class was significantly increased within the ASC group (DeltaG2 = 15, df =1, P = 0.0001). In particular, we confirmed higher frequencies of epilepsy, amenorrhea, dysmenorrhea, severe acne, gender dysphoria, and transsexualism, and differences in sexual preference in women with ASC. Women with ASC are at increased risk for symptoms and conditions linked to steroids. LCA revealed this steroidopathy despite the apparent underdiagnosis of PCOS.
    Molecular Autism 04/2014; 5(1):27. · 5.49 Impact Factor