Article

Isoform specificity of Na-K-ATPase-mediated ouabain signaling

Dept. of Physiology and Pharmacology, Univ. of Toledo College of Medicine, 3035 Arlington Ave., Toledo, OH 43614-5804, USA.
American journal of physiology. Renal physiology (Impact Factor: 3.3). 05/2008; 294(4):F859-66. DOI: 10.1152/ajprenal.00089.2007
Source: PubMed

ABSTRACT The ion transporter Na-K-ATPase functions as a cell signal transducer that mediates ouabain-induced activation of protein kinases, such as ERK. While Na-K-ATPase composed of the alpha(1)-polypeptide is involved in cell signaling, the role of other alpha-isoforms (alpha(2), alpha(3), and alpha(4)) in transmitting ouabain effects is unknown. We have explored this using baculovirus-directed expression of Na-K-ATPase polypeptides in insect cells and ERK phosphorylation as an indicator of ouabain-induced signaling. Ouabain addition to Sf-9 cells coexpressing Na-K-ATPase alpha(1)- and beta(1)-isoforms stimulated ERK phosphorylation. In contrast, expression of the alpha(1)- and beta(1)-polypeptides alone resulted in no effect, indicating that the alphabeta-complex is necessary for Na-K-ATPase signaling. Moreover, the ouabain effect was sensitive to genistein, suggesting that Na-K-ATPase-mediated tyrosine kinase activation is a critical event in the intracellular cascade leading to ERK phosphorylation. In addition, the Na-K-ATPases alpha(3)beta(1)- and alpha(4)beta(1)-isozymes, but not alpha(2)beta(1), responded to ouabain treatment. In agreement with the differences in ouabain affinity of the alpha-polypeptides, alpha(1)beta(1) required 100- to 1,000-fold more ouabain to signal than did alpha(4)beta(1) and alpha(3)beta(1), respectively. These results confirm the role of the Na-K-ATPase in ouabain signal transduction, show that there are important isoform-specific differences in Na-K-ATPase signaling, and demonstrate the suitability of the baculovirus expression system for studying Na-K-ATPase-mediated ouabain effects.

Download full-text

Full-text

Available from: Sandrine V Pierre, May 20, 2015
0 Followers
 · 
166 Views
 · 
11 Downloads
  • Source
    • "All human α-subunit isoforms contain a conserved ouabain-binding motif [56], thus it is expected that CTS-sensitivity is similar for all cell lines used in this work. However, ouabain-induced ERK signaling is affected differently by α-isoform expression, with α1, α3 and α4 allowing signal transduction, and α2 having no effect on ERK activation [57]. Furthermore, two plasma membrane pools of Na,K-ATPase α-subunits has been proposed, in which the caveolar fraction contains a non-pumping pool of α-subunits which functions in signal transduction, and the non-caveolar fraction contains a pumping pool which functions in ion homeostasis [58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiotonic steroids (CTS), specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.
    PLoS ONE 12/2013; 8(12):e84306. DOI:10.1371/journal.pone.0084306 · 3.23 Impact Factor
  • Source
    • "Overall, there were no consistent differences between the nonouabain and ouabain inhibited activities of total ATPase. It is known that there are various isoforms of the a subunit of Na 1 , K 1 -ATPase that are species specific, and have varying degrees of sensitivity to ouabain inhibition (Anner et al., 1992; Pierre et al., 2007). It has also been shown that certain regions of the a subunit of Na 1 , K 1 -ATPase, when mutated, will reduce ouabain sensitivity (Croyle et al., 1997). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Freshwater mussels are an imperiled fauna exposed to a variety of environmental toxicants such as lead (Pb) and studies are urgently needed to assess their health and condition to guide conservation efforts. A 28-day laboratory toxicity test with Pb and adult Eastern elliptio mussels (Elliptio complanata) was conducted to determine uptake kinetics and to assess the toxicological effects of Pb exposure. Test mussels were collected from a relatively uncontaminated reference site and exposed to a water-only control and five concentrations of Pb (as lead nitrate) ranging from 1 to 245 μg/L in a static renewal test with a water hardness of 42 mg/L. Endpoints included tissue Pb concentrations, hemolymph Pb and ion (Na⁺, K⁺, Cl⁻, Ca²⁺) concentrations, and Na⁺, K⁺-ATPase enzyme activity in gill tissue. Mussels accumulated Pb rapidly, with tissue concentrations increasing at an exposure-dependent rate for the first 2 weeks, but with no significant increase from 2 to 4 weeks. Mussel tissue Pb concentrations ranged from 0.34 to 898 μg/g dry weight, were strongly related to Pb in test water at every time interval (7, 14, 21, and 28 days), and did not significantly increase after day 14. Hemolymph Pb concentration was variable, dependent on exposure concentration, and showed no appreciable change with time beyond day 7, except for mussels in the greatest exposure concentration (245 μg/L), which showed a significant reduction in Pb by 28 days, suggesting a threshold for Pb binding or elimination in hemolymph at concentrations near 1000 μg/g. The Na⁺, K⁺-ATPase activity in the gill tissue of mussels was significantly reduced by Pb on day 28 and was highly correlated with tissue Pb concentration (R² = 0.92; P = 0.013). The Na⁺, K⁺-ATPase activity was correlated with reduced hemolymph Na⁺ concentration at the greatest Pb exposure when enzyme activity was at 30% of controls. Hemolymph Ca²⁺ concentration increased significantly in mussels from the greatest Pb exposure and may be due to remobilization from the shell in an attempt to buffer the hemolymph against Pb uptake and toxicity. We conclude that Na⁺, K⁺-ATPase activity in mussels was adversely affected by Pb exposure, however, because the effects on activity were variable at the lower test concentrations, additional research is warranted over this range of exposures.
    Environmental Toxicology 05/2012; 27(5):268-76. DOI:10.1002/tox.20639 · 3.23 Impact Factor
    • "Moreover, it has been demonstrated that the α3 isoform can substitute α1 in the signalosome and induce downstream signaling pathways. Pierre et al.[89] used the baculovirus expression system to determine which subunits of the transporter are required for mediating signal transduction events, e.g. the activation of ERK1/2 by phosphorylation. Interestingly, Sf9 insect cells expressing the NKA α1/β1 isozyme showed under ouabain application a dose-dependent linear increase in p-ERK, with the highest response obtained at 100 μM and 1000 μM. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since their first discovery as potential anti-cancer drugs decades ago, there is increasing evidence that digitalis-like compounds (DLC) have anti-tumor effects. Less is known about endogenous DLC (EDLC) metabolism and regulation. As stress hormones synthesized in and secreted from the adrenal gland, they likely take part in the hypothalamo-pituitary-adrenal (HPA) axis. In a previous study, we revealed reduced EDLC concentrations in plasma and organs from immune-compromised animals and proposed that a similar situation of a deregulated HPA axis with "adrenal EDLF exhaustion" may contribute to tumorigenesis in chronic stress situations. Here, we put forward the hypothesis that a lowered EDLC response threshold of tumor cells as compared with normal cells increases the risk of tumorigenesis, especially in those individuals with reduced EDLC plasma concentrations after chronic stress exposure. We will evaluate this hypothesis by (a) summarizing the effects of different DLC concentrations on tumor as compared with normal cells and (b) reviewing some essential differences in the Na/K-ATPase of tumor as compared with normal cells (isoform pattern, pump activity, mutations of other signalosome receptors). We will conclude that (1) tumor cells, indeed, seem to have their individual "physiologic" EDLC response range that already starts at pmolar levels and (2) that individuals with markedly reduced (pmolar) EDLC plasma levels are predisposed to cancer because these EDLC concentrations will predominantly stimulate the proliferation of tumor cells. Finally, we will summarize preliminary results from our department supporting this hypothesis.
    Journal of Carcinogenesis 02/2012; 11:2. DOI:10.4103/1477-3163.92999
Show more