An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133.

Departments of Molecular Biology and Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2008; 104(52):20844-9. DOI: 10.1073/pnas.0710558105
Source: PubMed

ABSTRACT The muscle-specific microRNAs, miR-1 and miR-133, play important roles in muscle growth and differentiation. Here, we show that the MEF2 transcription factor, an essential regulator of muscle development, directly activates transcription of a bicistronic primary transcript encoding miR-1-2 and 133a-1 via an intragenic muscle-specific enhancer located between the miR-1-2 and 133a-1 coding regions. This MEF2-dependent enhancer is activated in the linear heart tube during mouse embryogenesis and thereafter controls transcription throughout the atrial and ventricular chambers of the heart. MEF2 together with MyoD also regulates the miR-1-2/-133a-1 intragenic enhancer in the somite myotomes and in all skeletal muscle fibers during embryogenesis and adulthood. A similar muscle-specific intragenic enhancer controls transcription of the miR-1-1/-133a-2 locus. These findings reveal a common architecture of regulatory elements associated with the miR-1/-133 genes and underscore the central role of MEF2 as a regulator of the transcriptional and posttranscriptional pathways that control cardiac and skeletal muscle development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Warburg effect is a well-known feature of cancer cells. However, its' functional significance hasn't been elucidated yet. Pyruvate kinase muscle (PKM), which is a rate-limiting glycolytic enzyme, has 2 isoforms, PKM1 and PKM2. It has been reported that PKM2 is a tumor-specific isoform and promotes the Warburg effect. Also, it has been thought that tumor cells switch their PKM isoform from PKM1 to PKM2 during tumor development. Here, we showed that this switching machinery was induced only in limited cases, based on PKM expression in normal tissues, and that brain-specific microRNA (miR)-124 and muscle-specific miR-133b regulated this machinery by controlling PKM expression through targeting polypyrimidine tract-binding protein 1 (PTB1), which is a splicer of the PKM gene. Also, we confirmed that the PKM2/PKM1 ratio was further elevated in other PKM2-dominant organs such as colon through the down-regulation of these PTB1-associated microRNAs during tumor development.
    Scientific Reports 02/2015; 5:8647. DOI:10.1038/srep08647 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play key regulatory roles in various biological processes and diseases. A comprehensive analysis of large scale small RNA sequencing data (smRNA-seq) will be very helpful to explore tissue or disease specific miRNA markers and uncover miRNA variants. Here, we systematically analyzed 410 human smRNA-seq datasets, which samples are from 24 tissue/disease/cell lines. We tested the mapping strategies and found that it was necessary to make multiple-round mappings with different mismatch parameters. miRNA expression profiles revealed that on average ∼70% of known miRNAs were expressed at low level or not expressed (RPM < 1) in a sample and only ∼9% of known miRNAs were relatively highly expressed (RPM > 100). About 30% known miRNAs were not expressed in all of our used samples. The miRNA expression profiles were compiled into an online database (HMED, Dozens of tissue/disease specific miRNAs, disease/control dysregulated miRNAs and miRNAs with arm switching events were discovered. Further, we identified some highly confident editing sites including 24 A-to-I sites and 23 C-to-U sites. About half of them were widespread miRNA editing sites in different tissues. We characterized that the 2 types of editing sites have different features with regard to location, editing level and frequency. Our analyses for expression profiles, specific miRNA markers, arm switching, and editing sites, may provide valuable information for further studies of miRNA function and biomarker finding.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs are post-transcriptional regulators of gene expression that have been shown to be central players in the establishment of cellular programs, often acting as switches that control the choice between proliferation and differentiation during development and in adult tissues. The heart develops from two small patches of cells in the mesoderm, the heart fields, which originate the different cardiac cell types, including cardiomyocytes, vascular smooth muscle and endothelial cells. These progenitors proliferate and differentiate to establish a highly connected three-dimensional structure, involving a robust succession of gene expression programs strongly influenced by microRNAs. Although the mammalian heart has conventionally been viewed as a post-mitotic organ, cardiac cells have recently been shown to display some regenerative potential, which is nonetheless insufficient to regenerate heart lesions, in contrast with other vertebrates like the zebrafish. Both the proliferation of adult cardiac stem cells and the ability of cardiomyocytes to re-enter the cell cycle have been proposed to sustain these regenerative processes. Here we review the role of microRNAs in the control of stem cell and cardiomyocyte dependent cardiac regeneration processes, and discuss potential applications for the treatment of cardiac injury.
    12/2014; 3(4):996-1026. DOI:10.3390/cells3040996


Available from