Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab

Inserm U680, faculté de médecine Saint-Antoine, université Pierre-et-Marie-Curie-Paris-6, 75012 Paris, France.
Diabetes & Metabolism (Impact Factor: 3.27). 03/2008; 34(1):2-11. DOI: 10.1016/j.diabet.2007.09.004
Source: PubMed


White adipose tissue was believed to be just an energy-storage organ, but it is now recognized to be an active participant in energy homoeostasis and physiological functions such as immunity and inflammation. Macrophages are components of adipose tissue and actively participate in its activities. Adipose tissue is known to express and secrete a variety of products known as 'adipokines', including leptin, adiponectin, resistin and visfatin, as well as cytokines and chemokines such as tumor necrosis factor-alpha, interleukin-6 and monocyte chemoattractant protein-1. The release of adipokines by either adipocytes or adipose tissue-infiltrated macrophages leads to a chronic subinflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes, and the increased risk of cardiovascular disease associated with obesity.

85 Reads
  • Source
    • "ScienceDirect journal homepage: interleukin-6 (IL-6), and plasminogen activator inhibitor-1 (PAI-1) are related to inflammation in pathological conditions such as diabetes and obesity [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gelidium amansii (GA) is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1) rats without diabetes fed a high-fat diet (control group); (2) rats with diabetes fed a high-fat diet; (3) rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4) rats with diabetes fed a high-fat diet and GA. The experimental diet and drinking water were available ad libitum for 11 weeks. After the 11-week feeding study, plasma glucose, triglyceride, and cholesterol concentrations were lower in rats with diabetes fed the GA diet than in animals with diabetes fed the control diet. In addition, cholesterol and triglyceride excretion were significantly higher in rats with diabetes fed the GA diet. Moreover, GA feeding induced lipolysis in both paraepididymal and perirenal adipose tissues. Adipose tissue (paraepididymal and perirenal) weight and triglyceride contents were lower after GA treatment. Plasma adipocytokines including tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1 were reduced by GA feeding in rats with diabetes. The results of the current study suggest that GA feeding may regulate plasma glucose and lipid levels and prevent adipose tissue accumulation in rats with diabetes.
    Journal of Food and Drug Analysis 08/2015; 75. DOI:10.1016/j.jfda.2015.06.003 · 0.62 Impact Factor
  • Source
    • "Visfatin has multiple functions in the vasculature: it stimulates growth of vascular smooth muscle cells and endothelial angiogenesis, and it can also directly affect vascular contractility. Moreover, it amplifies adipocyte differentiation [6] [15]. It is evident that maintenance of a " normal " amount of adipose tissue is essential because an imbalance can cause serious health problems. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing incidence of obesity, leading to metabolic complications, is now recognized as a major public health problem. The adipocytes are not merely energy-storing cells, but they play crucial roles in the development of the so-called metabolic syndrome due to the adipocyte-derived bioactive factors such as adipokines, cytokines, and growth factors. The deregulated production and secretion of adipokines seen in obesity is linked to the pathogenesis of the metabolic disease processes. In this study, we hypothesized that dietary melatonin administration would support an anti-inflammatory response and play an important role in energy metabolism in subcutaneous and visceral adipose tissues of obese mice and so may counteract some of the disruptive effects of obesity. Lean and obese mice (ob/ob) received melatonin or vehicle in drinking water for 8 weeks. Thereafter, they were evaluated for morphologic alteration, inflammatory cell infiltration, and the adipokine patterns in visceral and subcutaneous white fat depots. In obese mice treated with vehicle, we observed a significant increase in fat depots, inflammation, and a deregulation of the adipokine network. In particular, we measured a significant reduction of adiponectin and an increase of tumor necrosis factor α, resistin, and visfatin in adipose tissue deposits. These changes were partially reversed when melatonin was supplemented to obese mice. Melatonin supplementation by regulating inflammatory infiltration ameliorates obesity-induced adipokine alteration, whereas melatonin administration in lean mice was unaffected. Thus, it is likely that melatonin would be provided in supplement form to control some of the disruptive effects on the basis of obesity pathogenic process. Copyright © 2015 Elsevier Inc. All rights reserved.
    Nutrition research 07/2015; 35(10). DOI:10.1016/j.nutres.2015.07.001 · 2.47 Impact Factor
    • "Brown). interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), adiponectin, leptin, resistin and visfatin [17] [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.
    The Journal of nutritional biochemistry 02/2015; 26(6). DOI:10.1016/j.jnutbio.2015.02.001 · 3.79 Impact Factor
Show more