SENSE factors for reliable cortical thickness measurement.

Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea.
NeuroImage (Impact Factor: 6.25). 03/2008; 40(1):187-96. DOI: 10.1016/j.neuroimage.2007.11.013
Source: PubMed

ABSTRACT The purposes of this study were to examine the effect of sensitivity encoding (SENSE) factors on cortical thickness measurements and to determine which SENSE factor to use to reliably measure cortical thickness in 3.0 T and 1.5 T T1-weighted MRI images. The 3D T1-TFE images were acquired from 11 healthy volunteers with 6 different SENSE acceleration factors from 1.0 (without SENSE acceleration) to 4.0 on a 1.5 T scanner, and 9 different SENSE factors from 1.0 to 6.0, plus a second-day 1.0 acquisition on a 3.0 T scanner. Cortical thickness was calculated for the entire cortical surface that was further subdivided into 33 regions. Repeated measures multivariate analysis of variance revealed that the main effect of SENSE factors (F=12.485, df=7, p=0.006) was a significant underestimation of cortical thickness at SENSE 5.0 (p=0.022) and 6.0 (p=0.011) at 3.0 T and at SENSE 4.0 (p<0.000) at 1.5 T. Repeated measures ANOVA showed that thickness measurements at the insula, superior temporal sulcus, the medial part of the superior frontal lobe, and cingulate cortex are highly affected by SENSE factors. SENSE factors affect thickness estimation more significantly at 1.5 T and thus 1.5 T imaging provides less reliable estimates using SENSE techniques. Faster imaging can be done without too much loss of reliability using a high SENSE factor, such as 3.0, at 3.0 T with acquisition time being inversely proportional to the SENSE factor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the morphological aspects of the functional reorganization of the blind's visual cortex, we analyzed the regional cortical thickness and cortical surface area in the congenitally blind subjects (CB) compared to the late-onset blind (LB) and sighted controls (SC). Cortical thickness was calculated from high-resolution T1-weighted magnetic resonance images of 21 young CB (blind from birth, mean age=27.1 yr), 12 LB, and 35 young SC. Analysis of covariance of cortical layer thickness with global thickness, age, and gender as covariates was done node-by-node on the entire cortical surface. Further analysis of mean thickness and surface area was performed for 33 automatically parceled cortical regions. Voxel-based morphometry was also conducted to compare results with cortical thickness and surface area. We found increased cortical thickness in the regions involved in vision and eye movement, such as the pericalcarine sulcus, cingulate cortex, and right frontal eye field, but cortical thinning in the left somatosensory cortex and right auditory cortex of CB compared to SC. CB had significantly reduced surface extent in the primary and associated visual areas, which explains volumetric atrophies in the visual cortex of CB despite increased cortical thickness. Conversely, LB tended to have cortical thinning in the primary visual cortex with a slight or no significant reduction in the surface extent. These morphological alterations in CB may indicate cortical reorganization at the visual cortex in connection with other sensory cortices.
    NeuroImage 05/2009; 47(1):98-106. · 6.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether a spin-echo-based sequence, which are inherently insensitive to magnetic field inhomogeneity, can be used for brain cortical thickness measurement studies. By using a double inversion recovery (DIR) spin-echo-based sequence, cortical thickness estimates were performed from data acquired from seven healthy volunteers. The cortical thickness was also calculated from data acquired using an MPRAGE sequence and the Bland-Altman analysis was performed for comparison of the two methods. The average signal and contrast to noise ratios (SNR, CNR) of the two methods were also calculated. The bias over the entire brain between DIR and MPRAGE was 0.87 ± 0.08 mm. The bias calculated in the major regional lobes were temporal: 0.76 ± 0.09 mm, frontal: 0.89 ± 0.07 mm, parietal: 0.92 ± 0.10 mm, occipital: 0.75 ± 0.12 mm, and cingulate: 0.79 ± 0.10 mm. This thickness difference was due mainly to the boundary difference in the MPRAGE and DIR at the grey matter/cerebral spinal fluid (GM/CSF) regions. The mean SNR and CNR was CNR(MPRAGE) = 47.8 ± 8.4 and CNR(DIR) = 19.2 ± 2.9, SNR(MPRAGE) = 76.8 ± 10.5 and SNR(DIR) = 21.1 ± 2.8. The study suggests that cortical thickness measurements can be performed using a DIR spin-echo sequence, which is inherently immune to main field inhomogeneity. Larger thickness measurements were consistently observed in DIR compared with MPRAGE.
    Journal of Magnetic Resonance Imaging 05/2011; 33(5):1218-23. · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human precentral and postcentral cortical areas interact to generate sensorimotor functions. Recent imaging work suggests that pre- and postcentral cortical thicknesses of an individual vary over time-scales of years and decades due to aging, disease, and other factors. In contrast, there is little understanding of how thicknesses of these areas vary in an individual over time-scales of minutes and weeks. This study used longitudinal magnetic resonance imaging (MRI) and computational morphometry approaches in 5 healthy subjects to assess how mean thicknesses, and intra- and interhemispheric relationships in mean thicknesses, of these areas vary in an individual subject over minutes and weeks. Within each individual, absolute differences in thicknesses over these times were small and similar in the precentral (mean = 0.02-0.04 mm) and postcentral (mean = 0.03-0.05 mm) areas. Each individual also had a consistent intrahemispheric disparity and interhemispheric asymmetrical or symmetrical relationship in thicknesses of these areas over these times. The results provide new understanding of within-individual cortical thickness variability in these areas and raise the possibility that longitudinal thickness profiling can provide a baseline definition of short time-scale thickness variability that can be used to detect acute and subacute changes in pre- and postcentral thicknesses at an individual subject level.
    Cerebral Cortex 10/2009; 20(7):1513-22. · 8.31 Impact Factor


1 Download
Available from