Article

TLR3 increases disease morbidity and mortality from vaccinia infection.

Graduate Program in Immunology, Department of Radiology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor 48109-2200, USA.
The Journal of Immunology (Impact Factor: 5.36). 02/2008; 180(1):483-91. DOI: 10.4049/jimmunol.180.1.483
Source: PubMed

ABSTRACT Innate immunity is required for effective control of poxvirus infections, but cellular receptors that initiate the host response to these DNA viruses remain poorly defined. Given this information and the fact that functions of TLRs in immunity to DNA viruses remain controversial, we investigated effects of TLR3 on pathogenesis of vaccinia virus, a prototype poxvirus. We used a recombinant strain Western Reserve vaccinia virus that expresses firefly luciferase to infect wild-type C57BL/6 and TLR3-/- mice through intranasal inoculation. Bioluminescence imaging showed that TLR3-/- mice had substantially lower viral replication in the respiratory tract and diminished dissemination of virus to abdominal organs. Mice lacking TLR3 had reduced disease morbidity, as measured by decreased weight loss and hypothermia after infection. Importantly, TLR3-/- mice also had improved survival relative to wild-type mice. Infected TLR3-/- mice had significantly reduced lung inflammation and recruitment of leukocytes to the lung. Mice lacking TLR3 also had lower levels of inflammatory cytokines, including IL-6, MCP-1, and TNF-alpha in serum and/or bronchoalveolar lavage fluid, but levels of IFN-beta did not differ between genotypes of mice. To our knowledge, our findings show for the first time that interactions between TLR3 and vaccinia increase viral replication and contribute to detrimental effects of the host immune response to poxviruses.

0 Followers
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.
    PLoS ONE 11/2014; 9(11):e112918. DOI:10.1371/journal.pone.0112918 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis (JE) is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9). Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3-/- and TLR4-/- mice, i.e. TLR3-/- mice were highly susceptible to JE, whereas TLR4-/- mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b+Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4-/- mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5), transcription factors (IRF-3, IRF-7), and IFN-dependent (PKR, Oas1, Mx) and independent ISGs (ISG49, ISG54, ISG56) by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3-/- myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4+ and CD8+ T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b+Ly-6Chigh monocytes) and CD4+Foxp3+ Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components during JE progression could be responsible for determining disease outcome through regulating negative and positive factors.
    PLoS Pathogens 09/2014; 10(9):e1004319. DOI:10.1371/journal.ppat.1004319 · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years there has been an acceleration of discovery in the field of innate anti-viral immunity to the point that many of the key events in early virus sensing and the discrete anti-viral responses they trigger have been elucidated in detail. In particular, pattern recognition receptors (PRRs) that detect viruses at the plasma membrane, in endosomes, and within the cytosol have been characterized. Upon stimulation by viruses, most of these PRRs trigger signal transduction pathways culminating in NFκB activation. NFκB contributes both to type I interferon induction, and to production of pro-inflammatory cytokines from infected cells. Our understanding of host anti-viral innate immunity has been greatly aided by an appreciation of the ways in which poxviruses have evolved strategies to inhibit both innate sensing and effector responses. A recurring feature of poxviral immunomodulation is the apparent necessity for poxviruses to evolve multiple, non-redundant inhibitors of NFκB activation which often appear to act on the same innate signaling pathway. The reason for such apparent over-targeting of one transcription factor is not clear. Here we describe the current understanding of how host cells sense poxvirus infection to trigger signaling pathways leading to NFκB activation and pro-inflammatory cytokine induction, and the ways in which poxviruses have evolved to concisely antagonize these systems.
    Cytokine & Growth Factor Reviews 10/2014; DOI:10.1016/j.cytogfr.2014.07.004 · 6.54 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 20, 2014