Baculovirus-infected insect cells expressing peptide-MHC complexes elicit protective antitumor immunity.

University of Colorado Denver and Health Sciences Center, Denver, CO 80206, USA.
The Journal of Immunology (Impact Factor: 5.36). 02/2008; 180(1):188-97. DOI: 10.4049/jimmunol.180.1.188
Source: PubMed

ABSTRACT Evaluation of T cell responses to tumor- and pathogen-derived peptides in preclinical models is necessary to define the characteristics of efficacious peptide vaccines. We show in this study that vaccination with insect cells infected with baculoviruses expressing MHC class I linked to tumor peptide mimotopes results in expansion of functional peptide-specific CD8+ T cells that protect mice from tumor challenge. Specific peptide mimotopes selected from peptide-MHC libraries encoded by baculoviruses can be tested using this vaccine approach. Unlike other vaccine strategies, this vaccine has the following advantages: peptides that are difficult to solublize can be easily characterized, bona fide peptides without synthesis artifacts are presented, and additional adjuvants are not required to generate peptide-specific responses. Priming of antitumor responses occurs within 3 days of vaccination and is optimal 1 wk after a second injection. After vaccination, the Ag-specific T cell response is similar in animals primed with either soluble or membrane-bound Ag, and CD11c+ dendritic cells increase expression of maturation markers and stimulate proliferation of specific T cells ex vivo. Thus, the mechanism of Ag presentation induced by this vaccine is consistent with cross-priming by dendritic cells. This straightforward approach will facilitate future analyses of T cells elicited by peptide mimotopes.


Available from: Kimberly Jordan, Apr 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prevention of an immune response against self-antigens derived from apoptotic cells is essential to preclude autoimmune and chronic inflammatory diseases. Here, we describe apoptosis induced externalization of endogenous cytosolic annexin 1 initiating an anti-inflammatory effector mechanism that suppresses the immune response against antigens of apoptotic cells. Cytosolic annexin 1 rapidly translocated to the apoptotic cell surface and inhibited dendritic cell (DC) activation induced by Toll like receptors (TLR). Annexin 1-inhibited DC showed strongly reduced secretion of pro-inflammatory cytokines (e.g. TNF and IL-12) and costimulatory surface molecules (e.g. CD40 and CD86), while anti-inflammatory mediators like PD-L1 remained unchanged. T cells stimulated by such DC lacked secretion of interferon-γ (IFN-γ) and TNF but retained IL-10 secretion. In mice, annexin 1 prevented the development of inflammatory DC and suppressed the cellular immune response against the model antigen ovalbumin (OVA) expressed in apoptotic cells. Furthermore, annexin 1 on apoptotic cells compromised OVA-specific tumor vaccination and impaired rejection of an OVA-expressing tumor. Thus, our results provide a molecular mechanism for the suppressive activity of apoptotic cells on the immune response towards apoptotic cell-derived self-antigens. This process may play an important role in prevention of autoimmune diseases and of the immune response against cancer.
    PLoS ONE 04/2013; 8(4):e62449. DOI:10.1371/journal.pone.0062449
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react or have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.
    Journal of Biological Chemistry 10/2013; DOI:10.1074/jbc.M113.509554
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that cross-react with the native tumor antigen, resulting in potent anti-tumor responses. Unfortunately, mimotopes may also elicit cells that do not cross-react or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell-line stimulates a tumor-specific T cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T cell response elicited by the mimotope towards high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost improves tumor immunity, compared to T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T cell receptors previously correlated with improved anti-tumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of anti-tumor T cell responses.
    Cancer Research 11/2012; 73(1). DOI:10.1158/0008-5472.CAN-12-1005