Article

Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists

Department of Medicinal Chemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
Molecular pharmacology (Impact Factor: 4.12). 04/2008; 73(3):789-800. DOI: 10.1124/mol.107.042101
Source: PubMed

ABSTRACT In addition to being an important receptor in leukocyte activation and mobilization, CCR5 is the essential coreceptor for human immunodeficiency virus (HIV). A large number of small-molecule CCR5 antagonists have been reported that show potent activities in blocking chemokine function and HIV entry. To facilitate the design and development of next generation CCR5 antagonists, docking models for major classes of CCR5 antagonists were created by using site-directed mutagenesis and CCR5 homology modeling. Five clinical candidates: maraviroc, vicriviroc, aplaviroc, TAK-779, and TAK-220 were used to establish the nature of the binding pocket in CCR5. Although the five antagonists are very different in structure, shape, and electrostatic potential, they were able to fit in the same binding pocket formed by the transmembrane (TM) domains of CCR5. It is noteworthy that each antagonist displayed a unique interaction profile with amino acids lining the pocket. Except for TAK-779, all antagonists showed strong interaction with Glu283 in TM 7 via their central basic nitrogen. The fully mapped binding pocket of CCR5 is being used for structure-based design and lead optimization of novel anti-HIV CCR5 inhibitors with improved potency and better resistance profile.

0 Followers
 · 
63 Views
  • Source
    Dataset: Hu's JGV
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pandemic of human immunodeficiency virus type one (HIV-1), the major etiologic agent of acquired immunodeficiency disease (AIDS), has led to over 33 million people living with the virus, among which 18 million are women and children. Until now, there is neither an effective vaccine nor a therapeutic cure despite over 30 years of efforts. Although the Thai RV144 vaccine trial has demonstrated an efficacy of 31.2%, an effective vaccine will likely rely on a breakthrough discovery of immunogens to elicit broadly reactive neutralizing antibodies, which may take years to achieve. Therefore, there is an urgency of exploring other prophylactic strategies. Recently, antiretroviral treatment as prevention is an exciting area of progress in HIV-1 research. Although effective, the implementation of such strategy faces great financial, political and social challenges in heavily affected regions such as developing countries where drug resistant viruses have already been found with growing incidence. Activating latently infected cells for therapeutic cure is another area of challenge. Since it is greatly difficult to eradicate HIV-1 after the establishment of viral latency, it is necessary to investigate strategies that may close the door to HIV-1. Here, we review studies on non-vaccine strategies in targeting viral entry, which may have critical implications for HIV-1 prevention.
    Protein & Cell 02/2013; 4(2):86-102. DOI:10.1007/s13238-012-2111-9 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ((2)H/(15)N/(13)C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding K(D) values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.
    Journal of Biomolecular NMR 12/2012; DOI:10.1007/s10858-012-9688-4 · 3.31 Impact Factor