Article

The role of the neuropeptide galanin in forming type-specific behavioral characteristics.

State Research Institute of Experimental Medicine, Russian Academy of Medical Sciences, 12 Academician Pavlov Street, 197376, St. Petersburg, Russia.
Neuroscience and Behavioral Physiology 02/2008; 38(1):93-8. DOI: 10.1007/s11055-008-0013-3
Source: PubMed

ABSTRACT Intranasal administration of a galanin receptor blocker to rats was found to change their behavioral type on being placed in an unfamiliar environment, with decreases in movement and investigative activity and increases in the level of anxiety in the open field test. The basal level of expression of the galanin precursor mRNA in the anterior hypothalamus was significantly higher in rats with the active type of behavior in the open field test. In conditions of galanin receptor blockade, there was also a faster increase in the serum corticosterone level in response to a stress situation (forced swimming test), which was accompanied by a reduction in the immobilization time. These data support the involvement of galanin in the formation of individual-typological behavioral characteristics and demonstrate its important role in adaptation to stress.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, studies have advocated neuropeptide systems as modulators for the behavioral states found in mood disorders such as depression and anxiety disorders. Neuropeptides have been tested in traditional animal models and screening procedures that have been validated by known antidepressants and anxiolytics. However, it has become clear that although these tests are very useful, neuropeptides have distinct behavioral effects and dose-dependent characteristics, and therefore, use of these tests with neuropeptides must be done with an understanding of their unique characteristics. This review will focus on the behavioral actions of neuropeptides and their synthetic analogs, particularly in studies utilizing various preclinical tests of depression and anxiety. Specifically, the following neuropeptide systems will be reviewed: corticotropin-releasing factor (CRF), urocortin (Ucn), teneurin C-terminal associated peptide (TCAP), neuropeptide Y (NPY), arginine vasopressin (AVP), oxytocin, the Tyr-MIF-1 family, cholecystokinin (CCK), galanin, and substance P. These neuropeptide systems each have a unique role in the regulation of stress-like behavior, and therefore provide intriguing therapeutic targets for mood disorder treatment.
    Peptides 12/2009; 31(4):736-56. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Alcoholism is a heterogeneous disease, with subjects possibly differing both in the best measure that predicts their excess consumption and in their most effective pharmacotherapy. Two different measures, high novelty-induced activity and high-fat-induced triglycerides (TGs), are known to identify subgroups of animals prone to consuming higher amounts of ethanol (EtOH). The question investigated here is whether these subgroups are, in fact, similar in their neurochemical phenotype that may contribute to their overconsumption. METHODS: EtOH-naïve, Sprague-Dawley rats were subgrouped based on the 2 predictor measures of activity or TG levels, and then quantitative real-time polymerase chain reaction and digoxigenin-labeled in situ hybridization were used to measure their expression of hypothalamic peptides that affect EtOH intake. In additional subgroups subsequently trained to drink 9% EtOH, the opioid antagonist and alcoholism medication, naltrexone, was tested at a low dose (0.02 mg/kg, s.c.) to determine the rats' sensitivity to its effects. RESULTS: The 2 measures, while both effective in predicting amount of EtOH intake, were found to identify distinctive subgroups. Rats with high compared to low activity exhibited significantly greater expression of galanin and enkephalin in the paraventricular nucleus (PVN) and of orexin in the perifornical lateral hypothalamus (PFLH), but no difference in melanin-concentrating hormone in PFLH or neuropeptide Y in arcuate nucleus. This contrasts with rats having high TG, which exhibited greater expression only of PVN galanin, along with reduced PFLH orexin. The high-activity rats with elevated enkephalin, but not high-TG rats, were also unusually sensitive to naltrexone, which significantly reduced their alcohol intake. CONCLUSIONS: In addition to revealing differences in endogenous peptides and drug responsiveness in predicted high EtOH drinkers, this study demonstrates that these disturbances differ markedly between the 2 at-risk subgroups. This indicates that simple tests may be effective in identifying subjects most responsive to a specific pharmacotherapy.
    Alcoholism Clinical and Experimental Research 06/2012; · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
    Neuroscience & Biobehavioral Reviews 07/2012; 36(9):1965-84. · 10.28 Impact Factor