System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria.

Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
Applied and Environmental Microbiology (Impact Factor: 3.95). 03/2008; 74(4):1117-23. DOI: 10.1128/AEM.02012-07
Source: PubMed

ABSTRACT Here, we established a system for displaying heterologous protein to the C terminus of the peptidoglycan-binding domain (cA domain) of AcmA (a major autolysin from Lactococcus lactis). Western blot and flow cytometric analyses revealed that the fusion proteins (cA-AmyA) of the cA domain and alpha-amylase from Streptococcus bovis 148 (AmyA) are efficiently expressed and successfully displayed on the surfaces of L. lactis cells. AmyA was also displayed on the cell surface while retaining its activity. Moreover, with an increase in the number of cA domains, the quantity of cA-AmyA fusion proteins displayed on the cell surface increased. When three repeats of the cA domain were used as an anchor protein, 82% of alpha-amylase activity was detected on the cells. The raw starch-degrading activity of AmyA was significantly higher when AmyA was fused to the C terminus of the cA domain than when it was fused to the N terminus. In addition, cA-AmyA fusion proteins were successfully displayed on the cell surfaces of Lactobacillus plantarum and Lactobacillus casei.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactococcus lactis is a lactic acid bacterium of proven safety for use in human oral applications. For this purpose, surface display of recombinant proteins is important, and new approaches for it are being sought. Analysis of the bacterial surface proteome is essential in identifying new candidate carrier proteins for surface display. We have made two different predictions of surface-associated proteins of L. lactis MG1363 by using Augur and LocateP software, which yielded 666 and 648 proteins, respectively. Surface proteins of L. lactis NZ9000, a derivative of MG1363, were identified by using a proteomics approach. The surface proteins were cleaved from intact bacteria, and the resulting peptides were identified by mass spectrometry. The latter approach yielded 80 proteins, 34 of which were not predicted by either software. Of the 80 proteins, 7 were selected for further study. These were cloned in frame with a C-terminal hexahistidine tag and overexpressed in L. lactis NZ9000 using nisin-controlled expression. Proteins of correct molecular weight carrying a hexahistidine tag were detected. Their surface localization was confirmed with flow cytometry. Basic membrane protein A (BmpA) was exposed at the highest level. To test BmpA as a candidate carrier protein, the hexahistidine tag was replaced by the B domain of staphylococcal protein A in the genetic construct. The B domain was displayed on the surface with BmpA as a carrier. The advantage of covalent BmpA binding was demonstrated. BmpA was thus shown to be a suitable candidate for a carrier protein in lactococcal surface display.
    Applied and Environmental Microbiology 02/2011; 77(4):1292-300. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have optimized the display of the B domain of staphylococcal protein A on the surface of Lactococcus lactis. The maximum binding capacity was estimated at 0.146 μg of antibody per 10⁸ cells and was sustained at 86% after treatment with simulated gastric juice. A tumor necrosis factor alpha (TNF-α)-binding affibody was also displayed and bound TNF-α, which could be useful in the treatment of inflammatory bowel disease.
    Applied and Environmental Microbiology 10/2010; 76(20):6928-32. · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass – either from dedicated crops or from municipal/industrial solid wastes – into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
    Biotechnology Advances 08/2014; · 9.60 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014