RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell

Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma 630-0101, Japan.
The Plant Cell (Impact Factor: 9.34). 01/2008; 19(12):4035-45. DOI: 10.1105/tpc.107.055517
Source: PubMed


A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene-mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern-triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice.

Download full-text


Available from: Nguyen Phuong Thao, Mar 31, 2014
34 Reads
  • Source
    • "In Arabidopsis, the sgt1a/ sgt1b double mutant is embryo lethal, although no abnormal phenotype is observed in either of the single mutants (Azevedo et al. 2006). In rice, it is proved impossible to generate OsSGT1-RNAi lines, presumably because of the essential role of SGT1 in rice (Thao et al. 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
    Plant Molecular Biology 02/2015; 87(6). DOI:10.1007/s11103-015-0298-x · 4.26 Impact Factor
  • Source
    • "The interaction of these three (co)-chaperones in rice seems to occur mainly in PTI (Thao et al., 2007; Wang et al., 2008). Accordingly, treatment with geldanamycin, an Hsp90 inhibitor, compromises OsRac1-HSP90 complex formation (Thao et al., 2007). RACK1 also plays a key role in the production of ROS and PTI (Nakashima et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In plants, sophisticated forms of immune systems have developed to cope with a variety of pathogens. Accumulating evidence indicates that Rac (also known as Rop), a member of the Rho family of small GTPases, is a key regulator of immunity in plants and animals. Like other small GTPases, Rac/Rop GTPases function as a molecular switch downstream of immune receptors by cycling between GDP-bound inactive and GTP-bound active forms in cells. Rac/Rop GTPases trigger various immune responses, thereby resulting in enhanced disease resistance to pathogens. In this review, we highlight recent studies that have contributed to our current understanding of the Rac/Rop family GTPases and the upstream and downstream proteins involved in plant immunity. We also compare the features of effector-triggered immunity between plants and animals, and discuss the in vivo monitoring of Rac/Rop activation.
    Frontiers in Plant Science 10/2014; 5:522. DOI:10.3389/fpls.2014.00522 · 3.95 Impact Factor
  • Source
    • "STI1 domain is a cochaperone STI1 binding domain. STI1 is a homologue of human cognate protein 70 (hsc70)/heat shock protein 90 (hsp90)-organising protein (Hop) and is a cochaperone for HSP70 and HSP90 [67]. There are two Sti1 homologues in the rice genome. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The dominant rice blast resistance gene Pi54 cloned by map-based cloning approach from indica rice cultivar Tetep confers broad spectrum resistance to Magnaporthe oryzae. In this investigation, an orthologue of Pi54 designated as Pi54of was cloned from Oryza officinalis conferring high degree of resistance to M. oryzae and is functionally validated. We have also characterized the Pi54of protein and demonstrate its interaction with AVR-Pi54 protein. The Pi54of encoded ∼43 kDa small and unique cytoplasmic LRR family of disease resistance protein having unique Zinc finger domain overlapped with the leucine rich repeat regions. Pi54of showed Magnaporthe-induced expression. The phylogenetic and western blot analysis confirmed orthologous nature of Pi54 and Pi54of genes, whereas the identity of protein was confirmed through MALDI-TOF analysis. The in silico analysis showed that Pi54of is structurally more stable than other cloned Pi54 proteins. The molecular docking revealed that Pi54of protein interacts with AVR-Pi54 through novel non-LRR domains such as STI1 and RhoGEF. The STI1 and GEF domains which interact with AVR-Pi54 are also components of rice defensome complex. The Pi54of protein showed differential domain specificity while interacting with the AVR protein. Functional complementation revealed that Pi54of transferred in two rice lines belonging to indica and japonica background imparts enhanced resistance against three highly virulent strains of M. oryzae. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54of cloned from wild species of rice provides high degree of resistance to M. oryzae and might display different molecular mechanism involved in AVRPi54-Pi54of interaction.
    PLoS ONE 08/2014; 9(8):e104840. DOI:10.1371/journal.pone.0104840 · 3.23 Impact Factor
Show more