Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice.

Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
Nature Immunology (Impact Factor: 24.97). 03/2008; 9(2):166-75. DOI: 10.1038/ni1552
Source: PubMed

ABSTRACT Interleukin 17 (IL-17) is a cytokine associated with inflammation, autoimmunity and defense against some bacteria. Here we show that IL-17 can promote autoimmune disease through a mechanism distinct from its proinflammatory effects. As compared with wild-type mice, autoimmune BXD2 mice express more IL-17 and show spontaneous development of germinal centers (GCs) before they increase production of pathogenic autoantibodies. We show that blocking IL-17 signaling disrupts CD4+ T cell and B cell interactions required for the formation of GCs and that mice lacking the IL-17 receptor have reduced GC B cell development and humoral responses. Production of IL-17 correlates with upregulated expression of the genes Rgs13 and Rgs16, which encode regulators of G-protein signaling, and results in suppression of the B cell chemotactic response to the chemokine CXCL12. These findings suggest a mechanism by which IL-17 drives autoimmune responses by promoting the formation of spontaneous GCs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigen-specific CD4(+) T cells are implicated in the autoimmune disease systemic lupus erythematosus (SLE), but little is known about the peptide antigens that they recognize and their precise function in disease. We generated a series of MHC class II tetramers of I-E(k)-containing peptides from the spliceosomal protein U1-70 that specifically stain distinct CD4(+) T-cell populations in MRL/lpr mice. The T-cell populations recognize an epitope differing only by the presence or absence of a single phosphate residue at position serine(140). The frequency of CD4(+) T cells specific for U1-70(131-150):I-E(k) (without phosphorylation) correlates with disease severity and anti-U1-70 autoantibody production. These T cells also express RORγt and produce IL-17A. Furthermore, the U1-70-specific CD4(+) T cells that produce IL-17A are detected in a subset of patients with SLE and are significantly increased in patients with mixed connective tissue disease. These studies provide tools for studying antigen-specific CD4(+) T cells in lupus, and demonstrate an antigen-specific source of IL-17A in autoimmune disease.
    Proceedings of the National Academy of Sciences 02/2015; 112(10). DOI:10.1073/pnas.1424796112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BXD2 mice spontaneously develop autoantibodies and subsequent glomerulonephritis, offering a useful animal model to study autoimmune lupus. Although initial studies showed a critical contribution of IL-17 and Th17 cells in mediating autoimmune B cell responses in BXD2 mice, the role of follicular helper T (Tfh) cells remains incompletely understood. We found that both the frequency of Th17 cells and the levels of IL-17 in circulation in BXD2 mice were comparable to those of wild-type. By contrast, the frequency of PD-1+CXCR5+ Tfh cells was significantly increased in BXD2 mice compared with wild-type mice, while the frequency of PD-1+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells was reduced in the former group. The frequency of Tfh cells rather than that of Th17 cells was positively correlated with the frequency of germinal center B cells as well as the levels of autoantibodies to dsDNA. More importantly, CXCR5+ CD4+ T cells isolated from BXD2 mice induced the production of IgG from naïve B cells in an IL-21-dependent manner, while CCR6+ CD4+ T cells failed to do so. These results together demonstrate that Tfh cells rather than Th17 cells contribute to the autoimmune germinal center reactions in BXD2 mice.
    PLoS ONE 03/2015; 10(3):e0120294. DOI:10.1371/journal.pone.0120294 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autoreactive B cells are associated with the development of several autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. The low frequency of these cells represents a major barrier to their analysis. Ag tetramers prepared from linear epitopes represent a promising strategy for the identification of small subsets of Ag-reactive immune cells. This is challenging given the requirement for identification and validation of linear epitopes and the complexity of autoantibody responses, including the broad spectrum of autoantibody specificities and the contribution of isotype to pathogenicity. Therefore, we tested a two-tiered peptide microarray approach, coupled with epitope mapping of known autoantigens, to identify and characterize autoepitopes using the BXD2 autoimmune mouse model. Microarray results were verified through comparison with established age-associated profiles of autoantigen specificities and autoantibody class switching in BXD2 and control (C57BL/6) mice and high-throughput ELISA and ELISPOT analyses of synthetic peptides. Tetramers were prepared from two linear peptides derived from two RNA-binding proteins (RBPs): lupus La and 70-kDa U1 small nuclear ribonucleoprotein. Flow cytometric analysis of tetramer-reactive B cell subsets revealed a significantly higher frequency and greater numbers of RBP-reactive marginal zone precursor, transitional T3, and PDL-2(+)CD80(+) memory B cells, with significantly elevated CD69 and CD86 observed in RBP(+) marginal zone precursor B cells in the spleens of BXD2 mice compared with C57BL/6 mice, suggesting a regulatory defect. This study establishes a feasible strategy for the characterization of autoantigen-specific B cell subsets in different models of autoimmunity and, potentially, in humans. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 04/2015; DOI:10.4049/jimmunol.1402335 · 5.36 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014