Article

Akt phosphorylates connexin43 on Ser373, a "Mode-1" binding site for 14-3-3

Natural Products & Cancer Biology Program, Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA.
Cell Communication & Adhesion (Impact Factor: 1.52). 09/2007; 14(5):211-26. DOI: 10.1080/15419060701755958
Source: PubMed

ABSTRACT Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. "Mode-1" interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser "mode-1" 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques.

Full-text

Available from: Alan F Lau, May 29, 2015
0 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 directly interact with each other and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C-terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5, and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone.
    Journal of Biological Chemistry 02/2014; 289(15). DOI:10.1074/jbc.M114.550608 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Approximately 40% of metastatic melanoma patients develop brain metastases. Our purpose was to identify genes aberrantly expressed in melanoma that might be associated with propensity for brain homing. Experimental Design: We studied gene expression profiles in a cell line model of brain metastasis (cerebrotropic A375Br cells versus parental A375P cells) and compared them to profiles of patients who developed early brain metastases and who did not. A tissue microarray containing 169 metastatic melanoma cases with variable time to brain metastasis was constructed to further study marker expression by quantitative immunofluorescence. An in vitro model of the blood brain barrier (BBB) was generated to evaluate potential mediators of brain metastases. Results:PLEKHA5 was differentially expressed in both the A375 cell line model and patient samples subjected to gene expression profiling. At the protein level, by quantitative immunofluorescence, PLEKHA5 was associated with decreased brain metastasis free survival. PLEKHA5 over-expression was not associated with other metastatic sites. Knock-down of PLEKHA5 decreases viability of A375Br cells, inhibits BBB transmigration and invasion in vitro. Similar results were found with YUMUL cells, cultured from a patient with overwhelming brain metastases. PLEKHA5 knock-down did not affect the viability of A375P cells. Conclusions: PLEKHA5 expression in melanoma tumors was associated with early development of brain metastases. Inhibition of PLEKHA5 might decrease passage across the BBB and decrease proliferation and survival of melanoma cells both in the brain and in extra-cerebral sites.
    Clinical Cancer Research 10/2014; 21(9). DOI:10.1158/1078-0432.CCR-14-0861 · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered phosphorylation and trafficking of connexin 43 (Cx43) during acute ischemia contributes to arrhythmogenic gap junction remodeling, yet the critical sequence and accessory proteins necessary for Cx43 internalization remain unresolved. 14-3-3 proteins can regulate protein trafficking, and a 14-3-3 mode-1 binding motif is activated upon phosphorylation of Ser373 of the Cx43 C-terminus. We hypothesized that Cx43Ser373 phosphorylation is important to pathologic gap junction remodeling. Immunofluorescence in human heart reveals enrichment of 14-3-3 proteins at intercalated discs, suggesting interaction with gap junctions. Knockdown of 14-3-3τ in cell lines increases gap junction plaque size at cell-cell borders. Cx43S373A mutation prevents Cx43/14-3-3 complexing and stabilizes Cx43 at the cell surface, indicating avoidance of degradation. Using Langendorff-perfused mouse hearts we detect phosphorylation of newly internalized Cx43 at Ser373 and Ser368 within 30 minutes of no-flow ischemia. Phosphorylation of Cx43 at Ser368 by PKC and Ser255 by MAPK has previously been implicated in Cx43 internalization. The Cx43S373A mutant is resistant to phosphorylation at both these residues and does not undergo ubiquitination, revealing Ser373 phosphorylation as an upstream gate-keeper of a post-translational modification cascade necessary for Cx43 internalization. Cx43Ser373 phosphorylation is a potent target for therapeutic interventions to preserve gap junction coupling in the stressed myocardium.
    Traffic 03/2014; 15(6). DOI:10.1111/tra.12169 · 4.71 Impact Factor