Infrared spectroscopy of discrete uranyl anion complexes

Idaho National Laboratory, Idaho Falls, Idaho, USA.
The Journal of Physical Chemistry A (Impact Factor: 2.78). 02/2008; 112(3):508-21. DOI: 10.1021/jp077309q
Source: PubMed

ABSTRACT The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

Download full-text


Available from: Wibe A de Jong, Jun 26, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The realistic InSb nanostructures namely InSb nanoring, InSb nanocube, InSb nanocube-18, InSb nanosheet, InSb nanocage and InSb nanocube-27 are simulated and optimized successfully using B3LYP/LanL2DZ basis set. The stability of InSb nanostructures is studied in terms of binding energy, vibrational studies and calculated energy. The electronic properties of InSb nanostructures are discussed using ionization potential, electron affinity and HOMO–LUMO gap. Point symmetry and dipole moment of InSb nanostructures are reported. Incorporation of impurity atom in InSb nanostructures is studied using embedding energy. The present study provides the information regarding the enhanced electronic properties of InSb nanostructure which finds its potential importance in microelectronics and optoelectronic devices.
    AEJ - Alexandria Engineering Journal 06/2014; 53(2). DOI:10.1016/j.aej.2014.03.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Collision-induced dissociation (CID) of protonated 2-hydroxynicotinic acid (2-OHNic) generates a dominant product ion through loss of 18 mass units, presumably the elimination of water. Subsequent isolation and storage of this product ion in the gas-phase environment of an ion trap mass spectrometer, without imposed collisional activation, shows that the species undergoes addition reactions to furnish new products that are higher in mass by 18 and 32 units. Density functional theory (DFT) calculations suggest that an acylium ion (i.e., loss of H2O from the acid group) is energetically more favored than is a species generated by elimination of H2O from the hydroxypyridine ring. Formation of the acylium product is confirmed by comparing the infrared multiple photon dissociation (IRMPD) spectrum to theoretical spectra from (DFT) harmonic calculations for several possible isomers. A thorough DFT study of the reaction dynamics suggests that the acylium ion is generated from the global minimum for the protonated precursor along a pathway that involves proton transfer from the hydroxypyridine ring and elimination of -OH from the acid group.
    International Journal of Mass Spectrometry 11/2012; 330-332. DOI:10.1016/j.ijms.2012.06.026 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In actinide chemistry, it has been shown that equatorial ligands bound to the metal centers of actinyl ions have a strong influence on the chemistry and therefore the electronic structure of the O═An═O moiety. While this influence has received a significant amount of attention, considerably less research has been done to investigate how the identity of the actinide metal itself (U, Np, Pu, Am) affects the actinyl stretching frequencies. Herein, we present the structural and spectroscopic characterization of six actinyl tetrachloride compounds (M2AnO2Cl4: M = Rb, Cs, Me4N; An = U, Pu) as well as the stretching and interactive force constants of the actinyl moiety in each species. Our results show a decrease in the stretching force constant and a weakening of the An═O bond when traversing the actinides from uranyl to plutonyl, which is interesting because the solid state molecular structures show a slight contraction of the An═O bond length when uranium is replaced with plutonium. Additionally, the interaction force constants for both the uranyl and plutonyl compounds were found to be negative, which corresponds to a reduction of the force constant for the symmetric stretching mode.
    Inorganic Chemistry 11/2013; 52(24). DOI:10.1021/ic401991n · 4.79 Impact Factor