Article

The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction.

Department of Biochemistry, The Daniella Rich Institute for Structural Biology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2008; 283(9):5815-30. DOI: 10.1074/jbc.M707541200
Source: PubMed

ABSTRACT The Kv7 subfamily of voltage-dependent potassium channels, distinct from other subfamilies by dint of its large intracellular COOH terminus, acts to regulate excitability in cardiac and neuronal tissues. KCNQ1 (Kv7.1), the founding subfamily member, encodes a channel subunit directly implicated in genetic disorders, such as the long QT syndrome, a cardiac pathology responsible for arrhythmias. We have used a recombinant protein preparation of the COOH terminus to probe the structure and function of this domain and its individual modules. The COOH-terminal proximal half associates with one calmodulin constitutively bound to each subunit where calmodulin is critical for proper folding of the whole intracellular domain. The distal half directs tetramerization, employing tandem coiled-coils. The first coiled-coil complex is dimeric and undergoes concentration-dependent self-association to form a dimer of dimers. The outer coiled-coil is parallel tetrameric, the details of which have been elucidated based on 2.0 A crystallographic data. Both coiled-coils act in a coordinate fashion to mediate the formation and stabilization of the tetrameric distal half. Functional studies, including characterization of structure-based and long QT mutants, prove the requirement for both modules and point to complex roles for these modules, including folding, assembly, trafficking, and regulation.

0 Bookmarks
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Co-assembly of KCNQ1 with KCNE1 generates the IKS potassium current that is vital for the proper repolarization of the cardiac action potential. Mutations in either KCNQ1 or KCNE1 genes lead to life-threatening cardiac arrhythmias causing long QT syndrome, short QT syndrome, sinus bradycardia and atrial fibrillation. Findings emerging from recent studies are beginning to provide a picture of how gain-of-function and loss-of-function mutations are associated with pleiotropic cardiac phenotypes in the clinics. In this review, we discuss recent molecular insights obtained from mutations altering different structural modules of the channel complex that are essential for proper IKS function. We present the possible molecular mechanisms underlying mutations impairing the voltage sensing functions, as well as those altering the channel regulation by phosphatidylinositol-4,5-bisphosphate, calmodulin and protein kinase A. We also discuss the significance of diseased IKS channels for adequate pharmacological targeting of cardiac arrhythmias.
    Current Opinion in Pharmacology 04/2014; 15C:74-82. · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KCNQ1 encodes the α subunit of the voltage-gated channel that mediates the cardiac slow delayed rectifier K + current (IKs). Here, we report a KCNQ1 allele encoding an A590T mutation [KCNQ1(A590T)] found in a 39-year-old female with a mild QT prolongation. A590 is located in the C-terminal α helical region of KCNQ1 that mediates subunit tetramerization, membrane trafficking, and interaction with Yotiao. This interaction is known to be required for the proper modulation of IKs by cAMP. Since previous studies reported that mutations in the vicinity of A590 impair IKs channel surface expression and function, we examined whether and how the A590T mutation affects the IKs channel. Electrophysiological measurements in HEK-293 T cells showed that the A590T mutation caused a reduction in IKs density and a right-shift of the current-voltage relation of channel activation. Immunocytochemical and immunoblot analyses showed the reduced cell surface expression of KCNQ1(A590T) subunit and its rescue by coexpression of the wild-type KCNQ1 [KCNQ1(WT)] subunit. Moreover, KCNQ1(A590T) subunit interacted with Yotiao and had a cAMP-responsiveness comparable to that of KCNQ1(WT) subunit. These findings indicate that the A590 of KCNQ1 subunit plays important roles in the maintenance of channel surface expression and function via a novel mechanism independent of interaction with Yotiao.
    Journal of Molecular and Cellular Cardiology 01/2014; · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KCNQ1 encodes the α subunit of the voltage-gated channel that mediates the cardiac slow delayed rectifier K+current (IKs). Here, we report a KCNQ1 allele encoding an A590T mutation [KCNQ1(A590T)] found in a 39-year-old female with a mild QT prolongation. A590 is located in the C-terminal α helical region of KCNQ1 that mediates subunit tetramerization, membrane trafficking, and interaction with Yotiao. This interaction is known to be required for the proper modulation of IKs by cAMP. Since previous studies reported that mutations in the vicinity of A590 impair IKs channel surface expression and function, we examined whether and how the A590T mutation affects the IKs channel. Electrophysiological measurements in HEK-293T cells showed that the A590T mutation caused a reduction in IKs density and a right-shift of the current-voltage relation of channel activation. Immunocytochemical and immunoblot analyses showed the reduced cell surface expression of KCNQ1(A590T) subunit and its rescue by coexpression of the wild-type KCNQ1 [KCNQ1(WT)] subunit. Moreover, KCNQ1(A590T) subunit interacted with Yotiao and had a cAMP-responsiveness comparable to that of KCNQ1(WT) subunit. These findings indicate that the A590 of KCNQ1 subunit plays important roles in the maintenance of channel surface expression and function via a novel mechanism independent of interaction with Yotiao.
    Journal of Molecular and Cellular Cardiology 04/2014; · 5.15 Impact Factor