Article

Intravascular detection of inflamed atherosclerotic plaques using a fluorescent photosensitizer targeted to the scavenger receptor

Department of Medicine (Cardiac Unit), Massachusetts General Hospital, Boston, MA 02114, USA.
Photochemical and Photobiological Sciences (Impact Factor: 2.94). 01/2008; 7(1):33-9. DOI: 10.1039/b710746c
Source: PubMed

ABSTRACT Inflammation plays an important role in the pathophysiology of atherosclerotic disease. We have previously shown that the targeted photosensitizer chlorin (e(6)) conjugated with maleylated albumin (MA-ce6) is taken up by macrophages via the scavenger receptor with high selectivity. In a rabbit model of inflamed plaque in New Zealand white rabbits via balloon injury of the aorto-iliac arteries and high cholesterol diet we showed that the targeted conjugate showed specificity towards plaques compared to free ce6. We now show that an intravascular fiber-based spectrofluorimeter advanced along the -iliac vessel through blood detects 24-fold higher fluorescence in atherosclerotic vessels compared to control rabbits (p < 0.001 ANOVA). Within the same animals, signal derived from the injured iliac artery was 16-fold higher than the contralateral uninjured iliac (p < 0.001). Arteries were removed and selective accumulation of MA-ce6 in plaques was confirmed using: (1) surface spectrofluorimetry, (2) fluorescence extraction of ce6 from aortic segments, and (3) confocal microscopy. Immunohistochemical analysis of the specimens showed a significant correlation between MA-ce6 uptake and RAM-11 macrophage staining (R = 0.83, p < 0.001) and an inverse correlation between MA-ce6 uptake and smooth muscle cell staining (R = -0.74, p < 0.001). MA-ce6 may function as a molecular imaging agent to detect and/or photodynamically treat inflamed plaques.

Download full-text

Full-text

Available from: Michael Hamblin, Aug 18, 2015
0 Followers
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct assessment of the vascular wall provides the capability to monitor atherosclerosis progression and assess the response to pharmacotherapy as a surrogate to clinical outcomes. Carotid intima-media thickness (IMT) using high-frequency ultrasound (10 MHz) accurately measures arterial wall thickness, with the recommendation that the far wall of the common carotid artery is the optimal site for serial assessment. A 15–18% increase in relative risk for myocardial infarction and stroke is observed for each 0.10 mm increase in carotid IMT. Inter-test reproducibility is high, but the application to individual patients is limited by generally slow progression of IMT. Coronary artery calcium correlates to overall atherosclerosis burden and independently predicts incident cardiovascular events up to tenfold over standard risk factors. Progression of coronary calcium is rapid, and a rate ≥15% per year clinically identifies individuals with increased cardiovascular risk. A complicated relationship exists between cardiovascular risk factor modification and coronary calcium progression, such that its use in pharmacotherapy evaluation is limited. Contrast enhanced CT angiography provides the ability to image both calcified and non-calcified coronary atherosclerosis, but requires careful attention to image quality. Nuclear imaging of the vascular wall, with positron emission tomography, targets inflammation within the vascular wall of larger vessels. Pharmacotherapies with anti-inflammatory properties may be studied with FDG-PET, but these findings have not yet been related to cardiovascular outcomes.
  • Source
    Journal of the American College of Cardiology 10/2008; 52(12):1033-4. DOI:10.1016/j.jacc.2008.06.022 · 15.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imaging approaches that visualize molecular targets rather than anatomic structures aim to illuminate vital molecular and cellular aspects of atherosclerosis biology in vivo. Several such molecular imaging strategies stand ready for rapid clinical application. This review describes the growing role of in vivo optical molecular imaging in atherosclerosis and highlights its ability to visualize atheroma inflammation, calcification, and angiogenesis. In addition, we discuss advances in multimodality probes, both in the context of multimodal imaging as well as multifunctional, or "theranostic," nanoparticles. This review highlights particular molecular imaging strategies that possess strong potential for clinical translation.
    Arteriosclerosis Thrombosis and Vascular Biology 05/2009; 29(7):1017-24. DOI:10.1161/ATVBAHA.108.165530 · 5.53 Impact Factor
Show more