Article

Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum.

Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
Investigative Ophthalmology &amp Visual Science (Impact Factor: 3.44). 01/2008; 49(1):290-4. DOI: 10.1167/iovs.07-0492
Source: PubMed

ABSTRACT To determine whether passive immunization with pneumolysin antiserum can reduce corneal damage associated with pneumococcal keratitis.
New Zealand White rabbits were intrastromally injected with Streptococcus pneumoniae and then passively immunized with control serum, antiserum against heat-inactivated pneumolysin (HI-PLY), or antiserum against cytotoxin-negative pneumolysin (psiPLY). Slit lamp examinations (SLEs) were performed at 24, 36, and 48 hours after infection. An additional four corneas from rabbits passively immunized with antiserum against psiPLY were examined up to 14 days after infection. Colony forming units (CFUs) were quantitated from corneas extracted at 20 and 48 hours after infection. Histopathology of rabbit eyes was performed at 48 hours after infection.
SLE scores at 36 and 48 hours after infection were significantly lower in rabbits passively immunized with HI-PLY antiserum than in control rabbits (P < or = 0.043). SLE scores at 24, 36, and 48 hours after infection were significantly lower in rabbits passively immunized with psiPLY antiserum than in control rabbits (P < or = 0.010). The corneas of passively immunized rabbits that were examined up to 14 days after infection exhibited a sequential decrease in keratitis, with an SLE score average of 2.000 +/- 1.586 at 14 days. CFUs recovered from infected corneas were not significantly different between each experimental group and the respective control group at 20 or 48 hours after infection (P > or = 0.335). Histologic sections showed more corneal edema and polymorphonuclear leukocyte (PMN) infiltration in control rabbits compared with passively immunized rabbits.
HI-PLY and psiPLY both elicit antibodies that provide passive protection against S. pneumoniae keratitis.

0 Bookmarks
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus, a leading cause of bacterial keratitis, secretes α-toxin, a cytotoxin active on the corneal epithelium. This study describes the production and testing of chemical inhibitors of α-toxin action. Purified α-toxin was titered by its ability to lyse rabbit erythrocytes in buffered saline (PBS). To prepare potential toxin inhibitors, each of 18 lipids was incorporated into a complex with methyl-β-cyclodextrin (MβCD) or hydroxypropyl-β-cyclodextrin (HPβCD). Serial dilutions of each lipid-cyclodextrin (CD-lipid) complex were mixed with α-toxin prior to the addition of rabbit erythrocytes. Select CD-lipid complexes were mixed with 12 hemolytic units (HU) α-toxin and injected into the rabbit corneal stroma so the resulting corneal erosions could be measured at 4 and 8 hours post-injection (PI). Eyes injected with toxin alone, MβCD, or HPβCD alone served as controls. Neither form of CD alone inhibited α-toxin. Of the 36 complexes prepared, 6 lipid-CD complexes were found to inhibit >100 HU of α-toxin. Four lipid complexes able to inhibit >200 HU of α-toxin were tested in toxin-injected corneas; at 4 and 8 hours PI, the complexes of cholesterol or lanosterol with MβCD and squalene or desmosterol with HPβCD caused a significant reduction in the corneal erosion size as compared to eyes injected with α-toxin alone (P ≤ 0.05). Specific lipid inclusion complexes with either MβCD or HPβCD demonstrated a significant inhibition of α-toxin in both in vitro and in vivo assays. Changes in either the cyclodextrin or lipid of a complex affected the inhibitory activity.
    Current eye research 11/2011; 37(2):87-93. · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine whether active immunization against pneumolysin (PLY), or polysaccharide capsule, protects against the corneal damage associated with Streptococcus pneumoniae keratitis. New Zealand White rabbits were actively immunized with Freund's adjuvant mixed with pneumolysin toxoid (ψPLY), Pneumovax 23 (PPSV23; Merck, Whitehouse Station, NJ), or phosphate-buffered saline (PBS), before corneal infection with 10⁵ colony-forming units (CFU) of S. pneumoniae. Serotype-specific rabbit polyclonal antisera or mock antisera were passively administered to rabbits before either intravenous infection with 10¹¹ CFU S. pneumoniae or corneal infection with 10⁵ CFU of S. pneumoniae. After active immunization, clinical scores of corneas of the rabbits immunized with ψPLY and Freund's adjuvant were significantly lower than scores of the rabbits that were mock immunized with PBS and Freund's adjuvant or with PPSV23 and Freund's adjuvant at 48 hours after infection (P ≤ 0.0010), whereas rabbits immunized with PPSV23 and Freund's adjuvant failed to show differences in clinical scores compared with those in mock-immunized rabbits (P = 1.00) at 24 and 48 hours after infection. Antisera from rabbits actively immunized with PPSV23 and Freund's adjuvant were nonopsonizing. Bacterial loads recovered from infected corneas were higher for the ψPLY- and PPSV23-immunized rabbits after infection with WU2, when compared with the mock-immunized rabbits (P ≤ 0.007). Conversely, after infection with K1443, the ψPLY-immunized rabbits had lower bacterial loads than the control rabbits (P = 0.0008). Quantitation of IgG, IgA, and IgM in the sera of ψPLY-immunized rabbits showed high concentrations of PLY-specific IgG. Furthermore, anti-PLY IgG purified from ψPLY-immunized rabbits neutralized the cytolytic effects of PLY on human corneal epithelial cells. Passive administration of serotype-specific antisera capable of opsonizing and killing S. pneumoniae protected against pneumococcal bacteremia (P ≤ 0.05), but not against keratitis (P ≥ 0.476). Active immunization with pneumococcal capsular polysaccharide and Freund's adjuvant fails to produce opsonizing antibodies, and passive administration of serotype specific opsonizing antibodies offers no protection against pneumococcal keratitis in the rabbit, whereas active immunization with the conserved protein virulence factor PLY and Freund's adjuvant is able to reduce corneal inflammation associated with pneumococcal keratitis, but has variable effects on bacterial loads in the cornea.
    Investigative ophthalmology & visual science 11/2011; 52(12):9232-43. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis-Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae-all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.
    Journal of Ophthalmology 01/2013; 2013:369094. · 1.37 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
Jun 4, 2014