Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy.

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, New York, New York 10461, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 03/2008; 118(2):777-88. DOI: 10.1172/JCI32806
Source: PubMed

ABSTRACT Altered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own degradation along with that of other CMA substrates. While pathogenic alpha-syn mutations are rare, alpha-syn undergoes posttranslational modifications, which may underlie its accumulation in cytosolic aggregates in most forms of PD. Using mouse ventral medial neuron cultures, SH-SY5Y cells in culture, and isolated mouse lysosomes, we have found that most of these posttranslational modifications of alpha-syn impair degradation of this protein by CMA but do not affect degradation of other substrates. Dopamine-modified alpha-syn, however, is not only poorly degraded by CMA but also blocks degradation of other substrates by this pathway. As blockage of CMA increases cellular vulnerability to stressors, we propose that dopamine-induced autophagic inhibition could explain the selective degeneration of PD dopaminergic neurons.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chaperone-mediated autophagy (CMA) selectively delivers cytosolic proteins with an exposed CMA-targeting motif to lysosomes for degradation and plays an important role in protein quality control and cellular homeostasis. A growing body of evidence supports the hypothesis that CMA dysfunction may be involved in the pathogenic process of neurodegenerative diseases. Both down-regulation and compensatory up-regulation in CMA activities have been observed in association with neurodegenerative conditions. Recent studies have revealed several new mechanisms by which CMA function may be involved in the regulation of factors critical for neuronal viability and homeostasis. Here, we summarize these recent advances in the understanding of the relationship between CMA dysfunction and neurodegeneration and discuss the therapeutic potential of targeting CMA in the treatment of neurodegenerative diseases.
    Translational neurodegeneration. 01/2014; 3:20.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's Disease (PD) is a complex and multifactorial disorder of both idiopathic and genetic origin. Thus far, more than 20 genes have been linked to familial forms of PD. Two of these genes encode for ATP13A2 and alpha-synuclein (asyn), proteins that seem to be members of a common network in both physiological and disease conditions. Thus, two different hypotheses have emerged supporting a role of ATP13A2 and asyn in metal homeostasis or in autophagy. Interestingly, an appealing theory might combine these two cellular pathways. Here we review the novel findings in the interaction between these two proteins and debate the exciting roads still ahead.
    Experimental neurobiology. 12/2014; 23(4):314-23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chaperone-mediated autophagy (CMA) is involved in wild-type α-synuclein degradation in Parkinson's disease (PD), and LAMP2A and Hsc 70 have recently been indicated to be deregulated by microRNAs. To recognize the regularory role of miR-320a in CMA and the possible role in α-synuclein degradation, in the present study, we examined the targeting and regulating role of miR-320 in Hsc 70 expression. We first constructed an α-synuclein-overexpressed human neuroblastoma cell line, SH-SY5Y-Syn(+), stably over-expressing wild-type α-synuclein and sensitive to an autophagy inhibitor, which exerted no effect on the expression of LAMP2A and Hsc 70. Then we evaluated the influence on the CMA by miR-320a in the SH-SY5Y-Syn(+) cells. It was shown that miR-320a mimics transfection of specifically targeted Hsc 70 and reduced its expression at both mRNA and protein levels, however, the other key CMA molecule, LAMP2A was not regulated by miR-320a. Further, the reduced Hsc 70 attenuated the α-synuclein degradation in the SH-SY5Y-Syn(+) cells, and induced a significantly high level of α-synuclein accumulation. In conclusion, we demonstrate that miR-320a specifically targeted the 3' UTR of Hsc 70, decreased Hsc 70 expression at both protein and mRNA levels in α-synuclein-over-expressed SH-SY5Y cells, and resulted in significant α-synuclein intracellular accumulation. These results imply that miR-320a might be implicated in the α-synuclein aggravation in PD.
    International Journal of Molecular Sciences 09/2014; 15(9):15845-15857. · 2.34 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014