Factor Xa binding to annexin 2 mediates signal transduction via protease-activated receptor 1

Scripps Research Institute, SP-258, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
Circulation Research (Impact Factor: 11.09). 03/2008; 102(4):457-64. DOI: 10.1161/CIRCRESAHA.107.167759
Source: PubMed

ABSTRACT The serine protease zymogen factor X is converted to its catalytically active form factor Xa by the binary complex of factor VIIa bound to its cell surface receptor tissue factor (TF) or by the intrinsic Xase complex, which consists of active factors VIII (VIIIa), IX (IXa), factor X, and Ca2+. Factor Xa has procoagulant activity by conversion of prothrombin to thrombin and also induces signal transduction, either alone or in the ternary TF:VIIa:factor Xa coagulation initiation complex. Factor Xa cleaves and activates protease activated receptor (PAR)1 or -2, but factor Xa signaling efficiency varies among cell types. We show here that annexin 2 acts as a receptor for factor Xa on the surface of human umbilical vein endothelial cells and that annexin 2 facilitates factor Xa activation of PAR-1 but does not enhance coagulant function of factor Xa. Overexpression of TF abolishes annexin 2 dependence on factor Xa signaling and diminishes binding to cell surface annexin 2, whereas selectively abolishing TF promotes the annexin 2/factor Xa interaction. We propose that annexin 2 serves to regulate factor Xa signaling specifically in the absence of cell surface TF and may thus play physiological or pathological roles when factor Xa is generated in a TF-depleted environment.

Download full-text


Available from: Jasimuddin Ahamed, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.
    Journal of Cellular Biochemistry 03/2012; 113(3):977-84. DOI:10.1002/jcb.23427 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
    Biological Chemistry 04/2010; 391(4):311-20. DOI:10.1515/BC.2010.024 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.
    Biological Chemistry 06/2008; 389(6):643-51. DOI:10.1515/BC.2008.077 · 2.69 Impact Factor