The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear.

Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095, USA.
Learning & memory (Cold Spring Harbor, N.Y.) (Impact Factor: 4.08). 02/2008; 15(1):39-45. DOI: 10.1101/lm.801108
Source: PubMed

ABSTRACT Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its function as a histone deacetylase inhibitor (HDAC). Here we report that VPA enhances long-term memory for both acquisition and extinction of cued-fear. Interestingly, VPA enhances extinction, but also enhances renewal of the original conditioned fear when tested in a within-subjects design. This effect appears to be related to a reconsolidation-like process since a single CS reminder in the presence of VPA can enhance long-term memory for the original fear in the context in which fear conditioning takes place. We also show that by modifying the intertrial interval during extinction training, VPA can strengthen reconsolidation of the original fear memory or enhance long-term memory for extinction such that it becomes independent of context. These findings have important implications for the use of HDAC inhibitors as adjuncts to behavior therapy in the treatment of phobia and related anxiety disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the interaction between fear and reward at the circuit and molecular level has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress-related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological, and molecular mechanisms control the extinction of learned fear and drug-seeking responses. This may, in part, account for the fact that individuals with Post-Traumatic Stress Disorder have a significantly elevated risk of developing a Substance Use Disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time, or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug-seeking behavior. Here, we review recent evidence pointing to common behavioral, systems, and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress-induced relapse.
    Genes Brain and Behavior 01/2015; · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example D-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
    Pharmacology [?] Therapeutics 12/2014; 122. · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of long-term memory requires a series of cellular and molecular changes that involve transcriptional regulation of gene expression. While these changes in gene transcription were initially thought to be largely regulated by the activation of transcription factors by intracellular signaling molecules, epigenetic mechanisms have emerged as an important regulator of transcriptional processes across multiple brain regions to form a memory circuit for a learned event or experience. Due to their self-perpetuating nature and ability to bi-directionally control gene expression, these epigenetic mechanisms have the potential to not only regulate initial memory formation but also to modify and update memory over time. This chapter focuses on the already established role for epigenetic mechanisms such as posttranslational modifications of histone proteins and DNA methylation at the different stages of memory storage. Additionally, this chapter emphasizes how these mechanisms interact to control the ideal epigenetic environment for memory formation and modification in neurons. The reader will gain insights into the limitations in our current understanding of epigenetic regulation of memory storage, especially in terms of their cell-type specificity and the lack of understanding in the interactions of various epigenetic modifiers to one another to impact gene expression changes during memory formation.
    Progress in molecular biology and translational science 11/2014; 128C:1-27. · 3.11 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014