Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex

Department of Physiology and Biophysics, Georgetown University, Washington, DC 20057, United States.
Neuroscience Letters (Impact Factor: 2.06). 03/2008; 431(3):191-6. DOI: 10.1016/j.neulet.2007.11.069
Source: PubMed

ABSTRACT In the cortex, neural responses to crossmodal stimulation are seen both in higher association areas and in primary sensory areas, and are thought to play a role in integration of crossmodal sensations. We used voltage-sensitive dye imaging (VSDI) to study the spatiotemporal characteristics of such crossmodal neural activity. We imaged three cortical regions in rat: primary visual cortex (V1), barrel field of primary somatosensory cortex (S1bf) and parietal association area (PA, flanked by V1 and S1bf). We find that sensory-evoked population activity can propagate in the form of a distinct propagating wave, robustly in either crossmodal direction. In single trials, the waveforms changed continuously during propagation, with dynamic variability from trial to trial, which we interpret as evidence for cortical involvement in the spreading process. To further characterize the functional anatomy of PA, we also studied the propagation of spontaneous sleep-like waves in this area. Using a novel flow-detection algorithm, we detected a propagation bias within PA of spontaneous waves--these tend to propagate parallel to the crossmodal axis, rather than orthogonal to it. Taken together, these findings demonstrate that intracortical networks show pre-attentive crossmodal propagation of activity, and suggest a potential mechanism for the establishment of crossmodal integration.

Download full-text


Available from: Kentaroh Takagaki, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basal ganglia are involved in sensorimotor functions and action selection, both of which require the integration of sensory information. In order to determine how such sensory inputs are integrated, we obtained whole-cell recordings in mouse dorsal striatum during presentation of tactile and visual stimuli. All recorded neurons responded to bilateral whisker stimulation, and a subpopulation also responded to visual stimulation. Neurons responding to both visual and tactile stimuli were located in dorsomedial striatum, whereas those responding only to whisker deflections were located dorsolaterally. Responses were mediated by overlapping excitation and inhibition, with excitation onset preceding that of inhibition by several milliseconds. Responses differed according to the type of neuron, with direct pathway MSNs having larger responses and longer latencies between ipsilateral and contralateral responses than indirect pathway MSNs. Our results suggest that striatum acts as a sensory “hub” with specialized functional roles for the different neuron types.
    Neuron 09/2014; 83(5). DOI:10.1016/j.neuron.2014.07.033 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events.
    Neuroscience 05/2012; 216:57-69. DOI:10.1016/j.neuroscience.2012.04.062 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternating epochs of activity and silence are a characteristic feature of neocortical networks during certain sleep cycles and deep states of anesthesia. The mechanism and functional role of these slow oscillations (<1 Hz) have not yet been fully characterized. Experimental and theoretical studies show that slow-wave oscillations can be generated autonomously by neocortical tissue but become more regular through a thalamo-cortical feedback loop. Evidence for a functional role of slow-wave activity comes from EEG recordings in humans during sleep, which show that activity travels as stereotypical waves over the entire brain, thought to play a role in memory consolidation. We used an animal model to investigate activity wave propagation on a smaller scale, namely within the rat somatosensory cortex. Signals from multiple extracellular microelectrodes in combination with one intracellular recording in the anesthetized animal in vivo were utilized to monitor the spreading of activity. We found that activity propagation in most animals showed a clear preferred direction, suggesting that it often originated from a similar location in the cortex. In addition, the breakdown of active states followed a similar pattern with slightly weaker direction preference but a clear correlation to the direction of activity spreading, supporting the notion of a wave-like phenomenon similar to that observed after strong sensory stimulation in sensory areas. Taken together, our findings support the idea that activity waves during slow-wave sleep do not occur spontaneously at random locations within the network, as was suggested previously, but follow preferred synaptic pathways on a small spatial scale.
    Journal of Neurophysiology 08/2011; 106(6):3035-44. DOI:10.1152/jn.00811.2010 · 3.04 Impact Factor