Article

Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: An ecophysiological approach

Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 1749-016 Lisboa, Portugal. <>
Chemosphere (Impact Factor: 3.5). 05/2008; 71(7):1340-7. DOI: 10.1016/j.chemosphere.2007.11.024
Source: PubMed

ABSTRACT The potential use of metallothioneins (MTs) as biomarkers of trace metal contamination was evaluated for the first time in the Algerian mouse (Mus spretus). Mice were collected seasonally in an abandoned mining area (Aljustrel) and in a reference area, both located in southern Portugal. MT levels were quantified in liver and kidney by differential pulse polarography and hepatic elemental concentrations (Mn, Fe, Cu, Zn, Se) were determined by particle-induced X-ray emission. Hepatic iron and selenium concentrations were elevated in mice from Aljustrel mine when compared to reference animals. MTs levels were averagely higher in mice from Aljustrel than those originated from the reference area. A season-dependent significant effect was found on the hepatic and renal MT concentrations, characterized by higher levels in winter and lower in autumn. In contaminated mice positive relationship between liver elemental contents (Cu in autumn and Fe in winter) and MTs were found. The seasonal variation of MT suggests that probably physiological and environmental factors could influence hepatic and renal MT induction. Results seem to imply that some environmental disturbance occur in the vicinity of the Aljustrel mine. Therefore, for the management purposes MT levels should be followed in liver of M. spretus, especially in winter. Furthermore, other physiological factors that could influence MT expression and turnover in Algerian mouse should also be monitored.

Full-text

Available from: Ana Maria Viegas-Crespo, May 29, 2015
0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lead-zinc (Pb-Zn) mine in Kabwe City and the copper-cobalt (Cu-Co) mine in the Copperbelt Province are major mining areas in Zambia. To examine the effects of metal pollution on wildlife, wild black rats (Rattus rattus and Rattus tanezumi) were captured in Kabwe and Chingola (in the Copperbelt Province), and in Lusaka (a noncontaminated site). Wild black rats in Kabwe accumulated significantly higher concentrations of Pb and Cd in various organs than rats from Lusaka. In Chingola, significantly higher concentrations of Cu, Co, Pb, and Cd were accumulated in wild black rats than in rats from Lusaka. These results were in accordance with metal accumulation patterns in soil. From toxicological aspects, concentrations of Pb and Cd in rats were generally low. However, metallothionein-1 (MT-1) and metallothionein-2 (MT-2) mRNA expression levels in wild black rats from Kabwe were significantly higher than those in rats from Lusaka. A generalized linear model (GLM) showed that concentrations of Zn and Cu had positive effects on the MT-1 and MT-2 mRNA expression. These results suggest that wild black rats in Zambian mining sites were exposed to metals that accumulated in their organs, causing biological responses such as MT mRNA induction. GLM indicated that heme oxygenase-1 (HO-1) mRNA expression could be a marker for Cr exposure.
    Environmental Monitoring and Assessment 10/2012; 185(6). DOI:10.1007/s10661-012-2912-6 · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the toxic effects of water-soluble elements from a contaminated soil via gavage in a single dose, simulating a geophagy event. The contaminated soil was collected in a field located in an industrial complex, and the control soil was collected in a reference area. Metabolic and behavioral parameters in Wistar male rats were measured after 24 and 96 h of gavage. After 96 h, the major organs were weighed, blood was collected to check hematological parameters, the bone marrow was taken for the micronucleus test, and the liver was used for evaluating the total antioxidant capacity, lipoperoxidation and protein carbonylation. Animals exposed to contaminated soil presented a few significant alterations by comparison with control animals: TBARS and protein carbonyl levels increased, the relative weight of the kidneys increased, metabolic parameters (body weight gain, food intake, water consumption, urine and feces production) depressed and there was behavioral alteration. These findings suggest that soils impacted by atmospheric contaminants can affect the organism physiological status jeopardizing the health of populations living in industrial areas. Finally, this study reassures that ingestion of potentially contaminated soils, even for short periods of time, can cause health risks.
    Environmental Geochemistry and Health 10/2012; DOI:10.1007/s10653-012-9496-5 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione S-transferases (GSTs) are pivotal phase-II enzymes for detoxification of xenobiotics. Pi-class GSTs play key roles in determining cancer susceptibility. The laboratory mouse Mus musculus (Mm) has two GST-Pi-encoding genes; while MmGstp1 is the counterpart of the unique human and rat Pi-class GST gene, the function of MmGstp2 remains unclear because its expression is almost undetectable in liver and its product lacks activity against typical GST/GST-Pi substrates. Mus spretus (Ms) is an aboriginal mouse species of great interest as a bio-indicator in environmental pollution studies and a reservoir of novel allelic variants and phenotypes. Using absolute real-time RT-PCR, we demonstrate significant differences in the hepatic levels of GST-Pi-encoding mRNAs between both mouse species. Particularly, we found that the Gstp2 gene of M. spretus, unlike its M. musculus counterpart, attains relatively high steady-state level of expression (∼30molecules/pg of total liver RNA in mice dwelling in a non-polluted area). To test whether the interspecies difference in Gstp2 mRNA levels is due, at least in part, to evolutionary divergence in the promoter regions, we (i) sequenced the 5'-flanking regulatory regions of the two Gstp2 genes; (ii) used bioinformatics tools to identify differences in TF binding sites (TFBSs) and cis-regulatory modules; and (iii) extended the in silico results to a cell-based functional assay. We observed high sequence divergence (2.8%) and differences in TFBSs (32.6%) between the two Gstp2 promoters. We also show that constructs harbouring promoter fragments with species-specific cis-regulatory motifs displayed differential luciferase reporter activity, suggesting that these promoter sequence variations may determine, at least in part, the strong difference in Gstp2 mRNA levels between M. musculus and M. spretus. Additionally, the comparative analysis of the coding sequences predicts that the MsGstp2 product may be an active Pi-class GST because of a Pro(12) to Arg(12) substitution. Interestingly, free-living M. spretus mice dwelling at an industrial settlement displayed significantly higher amounts of transcripts for both GST-P1 and GST-P2 than those from a non-polluted area, suggesting that. M. spretus may optimise the response to pollution by co-evolving the expression levels of the two Pi-class GST genes. Overall, our data suggest that MsGstp2 may be one of the genes contributing to the natural resistance of M. spretus, facilitating its adaptation in a wild environment. Further insights into the functional roles of mouse Pi-class GSTs should be gained from the data reported in this work.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 05/2012; 747(1):53-61. DOI:10.1016/j.mrgentox.2012.03.015 · 4.44 Impact Factor