Article

Effect of femto to nano molar concentrations of prostaglandin analogues on pregnant rat uterine contractility.

Biomolecular and Sport Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK.
European Journal of Pharmacology (Impact Factor: 2.59). 02/2008; 581(1-2):185-90. DOI: 10.1016/j.ejphar.2007.11.041
Source: PubMed

ABSTRACT Prostaglandins are bioactive lipids and important mediators of uterine relaxation as well as contraction during pregnancy and labour. E series prostaglandins may directly contract or relax myometrium in a dose-dependent manner, with the relaxatory effects mediated through the prostanoid receptors EP(2) and EP(4). The aim of this study was to evaluate the pharmacological effects of prostaglandin analogues on isolated pregnant rat uterine contractility, at 10(-15) to 10(-9) M concentrations. Uterine strips from rats at 19 days of gestation were set up in organ baths at 37 degrees C, bathed in Krebs buffer and gassed with 95% O(2)/5% CO(2). Spontaneous contractions were recorded via a force transducer. Concentration ranges of 10(-15)-10(-9) M of PGE(2), PGF(2alpha) and a range of prostaglandin analogues were applied non-cumulatively to the tissues. Spontaneous contractions were recorded for 12 min post dose. Amplitude, frequency, baseline tone and percent contractility over 10 min periods were analysed. PGE(2), butaprost, 9-keto fluprostenol, 11-keto fluprostenol, 9-keto fluprostenol isopropyl ester, AL8810 and 15(S)-15-methyl PGE(2) all caused a decrease in percent contractility (P<0.05). These agents, plus Delta(12)PGJ(2) and 9-deoxy-9-methylene-16,16-dimethyl PGE(2), also decreased frequency of contraction (P<0.05). Only PGE(2), PGF(2alpha) and 11-keto fluprostenol decreased baseline tone (P<0.05). The lower concentrations of prostaglandins used here mediated inhibition of spontaneous contractility of pregnant rat myometrium. Use of selective agonists suggested that the prostanoid receptors EP(2) and DP(2) are responsible for this relaxatory effect.

0 Bookmarks
 · 
72 Views