Article

Synthesis and pharmacological evaluation of the novel pseudo-symmetrical tamoxifen derivatives as anti-tumor agents

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Biochemical pharmacology (Impact Factor: 4.65). 04/2008; 75(5):1014-26. DOI: 10.1016/j.bcp.2007.11.005
Source: PubMed

ABSTRACT Four pseudo-symmetrical tamoxifen derivatives, RID-B (13), RID-C (14), RID-D (15), and bis(dimethylaminophenetole) (16), were synthesized via the novel three-component coupling reaction, and the structure-activity relationships of these pseudo-symmetrical tamoxifen derivatives were examined. It was discovered that 13 and 16 strongly inhibit the viability of the HL-60 human acute promyelocytic leukemia cell line, whereas 14 possesses a medium activity against the same cell line and 15 has no effect on the cell viability. The global anti-tumor activity of 13-16 against a variety of human cancer cells was assessed using a panel of 39 human cancer cell lines (JFCR 39), and it was shown that RID-B (13) strongly inhibited the growth of several cancer cell lines at concentrations of less than 1 microM (at 0.38 microM for SF-539 [central nervous system], at 0.58 microM for HT-29 [colon], at 0.20 microM for DMS114 [lung], at 0.21 microM for LOX-IMVI [melanoma], and at 0.23 microM for MKN74 [stomach]).

1 Follower
 · 
96 Views
  • Source
    • "The synthesis of compounds 1 (Shiina et al. 2008), 2 (Pigeon et al. 2011), 5 (Pigeon et al. 2011), and 8 (El Arbi et al. 2011), has already been published. Compounds 3, 6 and 7 are newly-synthesised products and their synthesis will be published in the future. "
    Dataset: Article5
  • Source
    • "The synthesis of compounds 1 (Shiina et al. 2008), 2 (Pigeon et al. 2011), 5 (Pigeon et al. 2011), and 8 (El Arbi et al. 2011), has already been published. Compounds 3, 6 and 7 are newly-synthesised products and their synthesis will be published in the future. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous work we have demonstrated the antimicrobial activity of ferrocenyl or phenyl derivatives of diphenyl butene series. This finding has opened a new area of applications of organometallic compounds. In order to improve these activities, we have synthesized new organic and organometallic diaryl butene compounds with different lengths of their amino chains. These new compounds, and also their ammonium salts, were tested against man pathogenic microorganisms Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 15442), Staphylococcus aureus (ATCC 6538) and Enterococcus hirae (ATCC 10541). It emerged from the tests that the Gram+ bacteria are more sensitive to the compounds than Gram-, and the compounds with 3 carbon amino chains have a better antimicrobial activity than the one having a chain of 2 or 4 carbons. The transformation of compounds to citrate salts was accompanied by a significant regression of antibacterial activity against Pseudomonas aeruginosa, for both organic and ferrocenic molecules. This resistance problem has been solved using hydrochlorides salts rather than citrates one.
    SpringerPlus 10/2013; 2:508. DOI:10.1186/2193-1801-2-508
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tamoxifen is an antagonist of estrogen receptor, which is used widely as an estrogen receptor-positive breast cancer drug that blocks growth signals and provokes apoptosis. However, recent studies have revealed that tamoxifen induces apoptosis even in estrogen receptor-negative cells. In the present study, we synthesized several tamoxifen derivatives to augment the apoptosis-inducing effect of tamoxifen and evaluated the apoptosis-inducing pathway. The estrogen receptor-positive human leukemia cell line HL-60 and estrogen receptor-negative human leukemia cell line Jurkat were treated with tamoxifen and synthesized tamoxifen derivatives, and thereafter subjected to cell viability-detection assays. Tamoxifen derivatives, as well as the lead compound tamoxifen, decreased the cell viability despite the expression of estrogen receptor. Among all of the synthesized tamoxifen derivatives, ridaifen-B had more potent cancer cell-damaging activity than tamoxifen. Ridaifen-B fragmented Jurkat cell DNA and activated caspases, suggesting that the ridaifen-B-induced apoptosis pathway is estrogen receptor independent. Moreover, mitochondrial involvement during ridaifen-B-induced apoptosis was estimated. Ridaifen-B significantly reduced mitochondrial membrane potential, and overexpression of Bcl-2 inhibited ridaifen-B-induced apoptosis. These results suggest that the induction of apoptosis by ridaifen-B, a novel tamoxifen derivative, is dependent on mitochondrial perturbation without estrogen receptor involvement.
    Cancer Science 04/2008; 99(3):608-14. DOI:10.1111/j.1349-7006.2007.00709.x · 3.53 Impact Factor
Show more